oxytocin--tri-gly- and Disease-Models--Animal

oxytocin--tri-gly- has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for oxytocin--tri-gly- and Disease-Models--Animal

ArticleYear
Oxytocin Regulates Stress-Induced Crf Gene Transcription through CREB-Regulated Transcription Coactivator 3.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015, Sep-02, Volume: 35, Issue:35

    The major regulator of the neuroendocrine stress response in the brain is corticotropin releasing factor (CRF), whose transcription is controlled by CREB and its cofactors CRTC2/3 (TORC2/3). Phosphorylated CRTCs are sequestered in the cytoplasm, but rapidly dephosphorylated and translocated into the nucleus following a stressful stimulus. As the stress response is attenuated by oxytocin (OT), we tested whether OT interferes with CRTC translocation and, thereby, Crf expression. OT (1 nmol, i.c.v.) delayed the stress-induced increase of nuclear CRTC3 and Crf hnRNA levels in the paraventricular nucleus of male rats and mice, but did not affect either parameter in the absence of the stressor. The increase in Crf hnRNA levels at later time points was parallel to elevated nuclear CRTC2/3 levels. A direct effect of Thr(4) Gly(7)-OT (TGOT) on CRTC3 translocation and Crf expression was found in rat primary hypothalamic neurons, amygdaloid (Ar-5), hypothalamic (H32), and human neuroblastoma (Be(2)M17) cell lines. CRTC3, but not CRCT2, knockdown using siRNA in Be(2)M17 cells prevented the effect of TGOT on Crf hnRNA levels. Chromatin-immunoprecipitation demonstrated that TGOT reduced CRTC3, but not CRTC2, binding to the Crf promoter after 10 min of forskolin stimulation. Together, the results indicate that OT modulates CRTC3 translocation, the binding of CRTC3 to the Crf promoter and, ultimately, transcription of the Crf gene.. The neuropeptide oxytocin has been proposed to reduce hypothalamic-pituitary-adrenal (HPA) axis activation during stress. The underlying mechanisms are, however, elusive. In this study we show that activation of the oxytocin receptor in the paraventricular nucleus delays transcription of the gene encoding corticotropin releasing factor (Crf), the main regulator of the stress response. It does so by sequestering the coactivator of the transcription factor CREB, CRTC3, in the cytosol, resulting in reduced binding of CRTC3 to the Crf gene promoter and subsequent Crf gene expression. This novel oxytocin receptor-mediated intracellular mechanism might provide a basis for the treatment of exaggerated stress responses in the future.

    Topics: Animals; Cells, Cultured; Colforsin; Corticotropin-Releasing Hormone; CREB-Binding Protein; Disease Models, Animal; Female; Gene Expression Regulation; Hypothalamus; Male; Mice; Mice, Inbred C57BL; Neurons; Oxytocics; Oxytocin; Protein Transport; Rats; Rats, Wistar; Receptors, Oxytocin; Signal Transduction; Stress, Psychological; Thromboplastin

2015
Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats.
    Pain, 2013, Volume: 154, Issue:8

    Oxytocin (OT) and arginine vasopressin (AVP) are 2 neuropeptides that display well-known effects on the reproductive system. Although still controversial, oxytocin and vasopressin were demonstrated to exert potent effects on the nociceptive system when administered directly in various central nervous structures. On the other hand, little is known about their peripheral (hormonal) actions on nociception and pain responses. The aim of the present work was to characterize the effects of physiological blood concentrations of OT and AVP on spinal nociception and on pain responses. To do so, growing doses of OT or AVP were administered intravenously and the nociceptive processing by spinal cord neurons was analyzed in anesthetized male rats in vivo. We observed that the action potentials mediated by C-type nociceptive fibers was strongly reduced (antinociception) after intravenous injections of low doses of OT (<5 μg) or AVP (<500 pg), whereas an increase (pronociception) was observed at higher doses. Interestingly, antinociceptive and pronociceptive effects were fully abolished in the presence of the OT receptor antagonist and the AVP receptor antagonist type 1A (V1A), respectively. We confirmed this result with a behavioral model of forced swim stress-induced analgesia associated with plasmatic release of OT (and not vasopressin). Stress-induced analgesia was transiently lost after i.v. administration of OTR antagonist. Together, the present work provides straightforward evidence that blood levels of OT and AVP modulate nociception, windup plasticity and pain responses. The final target structures explaining these effects remains to be identified but are likely to be C-type nociceptors.

    Topics: Action Potentials; Analgesics; Animals; Arginine Vasopressin; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Hyperalgesia; Male; Nerve Fibers, Unmyelinated; Neurons; Oxytocin; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Vasopressin; Spinal Cord; Swimming

2013