oxypurinol has been researched along with Cardiac-Output--Low* in 2 studies
2 other study(ies) available for oxypurinol and Cardiac-Output--Low
Article | Year |
---|---|
Role of xanthine oxidoreductase in the reversal of diastolic heart failure by candesartan in the salt-sensitive hypertensive rat.
The role of angiotensin II and reactive oxygen species in the exacerbation of diastolic heart failure is unknown. We examined the therapeutic effect of angiotensin blockade on hypertensive diastolic heart failure, focusing on the role of xanthine oxidoreductase and reduced nicotinamide-adenine dinucleotide phosphate oxidase, major enzymes producing reactive oxygen species. Dahl salt-sensitive hypertensive rats (DS rats) with established diastolic heart failure were given vehicle, candesartan (an angiotensin II receptor subtype 1 receptor blocker), oxypurinol (a xanthine oxidoreductase inhibitor), apocynin (a reduced nicotinamide-adenine dinucleotide phosphate oxidase inhibitor), or hydralazine (a vasodilator), and their therapeutic effects on diastolic heart failure were compared. Candesartan treatment of DS rats with established diastolic heart failure reversed cardiac remodeling, improved cardiac relaxation abnormality, and prolonged survival, being accompanied by the attenuation of the increase in cardiac superoxide, reduced nicotinamide-adenine dinucleotide phosphate oxidase, and xanthine oxidoreductase activities. Thus, the beneficial effect of candesartan in DS rats appears to be mediated by the inhibition of cardiac reactive oxygen species. Cardiac xanthine oxidoreductase inhibition with oxypurinol significantly reduced cardiac superoxide, prevented the progression of cardiac remodeling, and delayed the mortality in DS rats. Apocynin, which significantly inhibited cardiac reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, prevented the exacerbation of diastolic heart failure more than hydralazine. However, compared with candesartan or oxypurinol, apocynin did not improve cardiac reactive oxygen species, remodeling, and function in DS rats. In conclusion, candesartan slowed the exacerbation of hypertensive diastolic heart failure in DS rats by causing reverse cardiac remodeling. Cardiac xanthine oxidoreductase contributed to these beneficial effects of candesartan. Topics: Acetophenones; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Cardiac Output, Low; Heart Ventricles; Hypertension; Liver; Lung; Mitogen-Activated Protein Kinase Kinases; Myocardium; NADPH Oxidases; Oxypurinol; Rats; Rats, Inbred Dahl; Reactive Oxygen Species; Tetrazoles; Xanthine Oxidase | 2007 |
Xanthine oxidase inhibitors improve energetics and function after infarction in failing mouse hearts.
After myocardial infarction, ventricular geometry and function, as well as energy metabolism, change markedly. In nonischemic heart failure, inhibition of xanthine oxidase (XO) improves mechanoenergetic coupling by improving contractile performance relative to a reduced energetic demand. However, the metabolic and contractile effects of XO inhibitors (XOIs) have not been characterized in failing hearts after infarction. After undergoing permanent coronary ligation, mice received a XOI (allopurinol or oxypurinol) or matching placebo in the daily drinking water. Four weeks later, 1H MRI and 31P magnetic resonance spectroscopy (MRS) were used to quantify in vivo functional and metabolic changes in postinfarction remodeled mouse myocardium and the effects of XOIs on that process. End-systolic (ESV) and end-diastolic volumes (EDV) were increased by more than sixfold after infarction, left ventricle (LV) mass doubled (P < 0.005), and the LV ejection fraction (EF) decreased (14 +/- 9%) compared with control hearts (59 +/- 8%, P < 0.005) at 1 mo. The myocardial phosphocreatine (PCr)-to-ATP ratio (PCr/ATP) was also significantly decreased in infarct remodeled hearts (1.4 +/- 0.6) compared with control animals (2.1 +/- 0.5, P < 0.02), in agreement with prior studies in larger animals. The XOIs allopurinol and oxypurinol did not change LV mass but limited the increase in ESV and EDV of infarct hearts by 50%, increased EF (23 +/- 9%, P = 0.01), and normalized cardiac PCr/ATP (2.0 +/- 0.5, P < 0.04). We conclude that XOIs improve ventricular function after infarction and normalize high-energy phosphate ratio in heart failure. Thus XOI therapy offers a new and potentially complementary approach to limit the adverse contractile and metabolic consequences after infarction. Topics: Adenosine Triphosphate; Allopurinol; Animals; Cardiac Output, Low; Energy Metabolism; Enzyme Inhibitors; Heart; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; Mice; Myocardial Infarction; Myocardium; Oxypurinol; Phosphocreatine; Stroke Volume; Ventricular Function; Ventricular Remodeling; Xanthine Oxidase | 2006 |