oxyntomodulin has been researched along with Insulin-Resistance* in 28 studies
8 review(s) available for oxyntomodulin and Insulin-Resistance
Article | Year |
---|---|
Therapeutic Potential of Semaglutide, a Newer GLP-1 Receptor Agonist, in Abating Obesity, Non-Alcoholic Steatohepatitis and Neurodegenerative diseases: A Narrative Review.
Semaglutide, a peptidic GLP-1 receptor agonist, has been clinically approved for treatment of type 2 diabetes mellitus and is available in subcutaneous and oral dosage form. Diabetes, insulin resistance, and obesity are responsible for the pathological manifestations of non-alcoholic steatohepatitis (NASH). Similarly, insulin resistance in brain is also responsible for neurodegeneration and impaired cognitive functions.. Observations from phase-3 clinical trials like SUSTAIN and PIONEER indicated anti-obesity potential of semaglutide, which was established in STEP trials. Various pre-clinical and phase-2 studies have indicated the therapeutic potential of semaglutide in non-alcoholic steatohepatitis and neurodegenerative disorders like Parkinson's and Alzheimer's disease.. Significant weight reduction ability of semaglutide has been demonstrated in various phase-3 clinical trials, for which recently semaglutide became the first long-acting GLP-1 receptor agonist to be approved by the United States Food and Drug Administration for management of obesity. Various pre-clinical and clinical studies have revealed the hepatoprotective effect of semaglutide in NASH and neuroprotective effect in Parkinson's and Alzheimer's disease.. Many GLP-1 receptor agonists have shown hepatoprotective and neuroprotective activity in animal and human trials. As semaglutide is an already clinically approved drug, successful human trials would hasten its inclusion into therapeutic treatment of NASH and neurodegenerative diseases. Semaglutide improves insulin resistance, insulin signalling pathway, and reduce body weight which are responsible for prevention or progression of NASH and neurodegenerative diseases. Topics: Alzheimer Disease; Animals; Diabetes Mellitus, Type 2; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Hypoglycemic Agents; Insulin Resistance; Neurodegenerative Diseases; Non-alcoholic Fatty Liver Disease; Obesity; Parkinson Disease | 2022 |
Gut peptide and neuroendocrine regulation of hepatic lipid and lipoprotein metabolism in health and disease.
Non-alcoholic fatty liver disease (NAFLD) is a continuum of disorders that can range from simple steatosis to non-alcoholic steatohepatitis (NASH). As a complex metabolic disorder, the pathophysiology of NAFLD is incompletely understood. Recently glucagon-like peptide (GLP)-1 and -2 signalling has been implicated in the pathogenesis of NAFLD. The role of these gut hormones in the hepatic abnormalities is complicated by lack of consensus on the presence of GLP-1 and GLP-2 receptors within the liver. Nevertheless, GLP-1 and GLP-2 receptor agonists have been associated with alterations in lipid metabolism and hepatic and systemic inflammation, pathological abnormalities characteristic of NAFLD. Treatment with GLP-1 analogues has been shown to reverse features of NAFLD including insulin resistance, and alterations in hepatic de novo lipogenesis and reactive oxygen species. In this review, we provide an overview of the role of GLP-1 and GLP-2 in lipid homeostasis and metabolic disease including NAFLD and NASH. Topics: Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptide-2 Receptor; Glucagon-Like Peptides; Humans; Insulin Resistance; Lipid Metabolism; Lipids; Lipogenesis; Lipoproteins; Liraglutide; Liver; Non-alcoholic Fatty Liver Disease; Peptides; Signal Transduction | 2019 |
Efficacy and safety of once-weekly semaglutide for the treatment of type 2 diabetes.
Type 2 diabetes is a chronic metabolic disease characterized by persistent hyperglycemia resulting from progressive deficient of insulin in patients with a background of insulin resistance. Current treatment algorithms recommended by American Diabetes Association/The European Association for the Study of Diabetes promote a patient-centered approach that takes into account a comprehensive consideration of pharmacological properties of drugs, including glucose-lowering action, effects on body weight, correction on multiple pathophysiologic defects, tolerability, and long-term safety. Glucagon-likepeptide1 (GLP-1) receptor analogues are appealing due to the improved glycemic control in a glucose-dependent manner, modest weight loss and low risk of hypoglycemia. Areas covered: Semaglutide (Novo Nordisk), a once-weekly GLP-1 analogue, is currently in the phase III clinical trial for the treatment of type 2 diabetes. This article aims to review the pharmacological and clinical profiles of semaglutide based on the available clinical data. Expert opinion: Semaglutide achieved greater reduction from baseline in HbA Topics: Blood Glucose; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin Resistance | 2017 |
[Characteristics of cytokine and hormone status in patients with diabetes mellitus type 2 during alimentary exposure].
Diabetes mellitus (DM) is a main noninfectious disease, making significant influence on patients quality of life and life time. The medico-social role of diabetes is defined by wide prevalence of a disease in population and high risk of development of incapacitating complications. Therefore, considerable efforts of modern medicine focused on the study of etio-pathogenetic mechanism and the possibility of dietetic correction in this disease. In this review discusses efficacy of dietary therapy in type 2 diabetes, the role of insulin-like growth 1 (IGF-1)/insulin of pathogenesis microvascular complications. The role of inflammation in the development of microvascular complications, in the first place cytokines, act on the insulin signal pathway and affect the intracellular inflammatory kinase cascade was shown. Also, it is shown that adipose tissue inflammation modulates B-cell function and promotes progressive reduction of insulin secretion. When blood glucose levels are elevated, Glucagon-like peptide--1 stimulates insulin secretion, decrease glucagon secretion, improve B-cell function, and slows gastric emptying. It determines the necessity of fulfillment of further researches of cellular and humoral immunity in diabetes mellitus and the development of personal methods in prevention and treatment of this disease. Topics: Cytokines; Diabetes Mellitus, Type 2; Diet, Diabetic; Glucagon-Like Peptides; Hormones; Humans; Insulin Resistance; Somatomedins | 2012 |
Unraveling the science of incretin biology.
Type 2 diabetes mellitus has become an enormous and worldwide healthcare problem that is almost certain to worsen. Current therapies, which address glycemia and insulin resistance, have not adequately addressed the complications and treatment failures associated with this disease. New treatments based on the incretin hormones provide a novel approach to address some components of the complex pathophysiology of type 2 diabetes. The purpose of this review is to elucidate the science of the incretin hormones and describe the incretin effect and its regulatory role in beta-cell function, insulin secretion, and glucose metabolism. The key endogenous hormones of incretin system are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1); a key enzymatic regulator of these hormones is dipeptidyl peptidase-4, which rapidly inactivates/degrades the incretin hormones. The roles of the incretin hormones in the regulation of glucose metabolism and other related physiologic processes such as gut motility and food intake are disturbed in type 2 diabetes. These disturbances--defects in the incretin system--contribute to the pathophysiology of type 2 diabetes in manifold ways. Consequently, therapies designed to address impairments to the effects of the incretin hormones have the potential to improve glucose regulation and other abnormalities (e.g., weight gain, loss of beta-cell function) associated with type 2 diabetes. Topics: Animals; Biomedical Research; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Humans; Incretins; Insulin; Insulin Resistance; Insulin-Secreting Cells; Receptors, Glucagon | 2009 |
Unraveling the science of incretin biology.
Type 2 diabetes mellitus has become an enormous and worldwide healthcare problem that is almost certain to worsen. Current therapies, which address glycemia and insulin resistance, have not adequately addressed the complications and treatment failures associated with this disease. New treatments based on the incretin hormones provide a novel approach to address some components of the complex pathophysiology of type 2 diabetes. The purpose of this review is to elucidate the science of the incretin hormones and describe the incretin effect and its regulatory role in beta-cell function, insulin secretion, and glucose metabolism. The key endogenous hormones of incretin system are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1); a key enzymatic regulator of these hormones is dipeptidyl peptidase-4, which rapidly inactivates/degrades the incretin hormones. The roles of the incretin hormones in the regulation of glucose metabolism and other related physiologic processes such as gut motility and food intake are disturbed in type 2 diabetes. These disturbances--defects in the incretin system--contribute to the pathophysiology of type 2 diabetes in manifold ways. Consequently, therapies designed to address impairments to the effects of the incretin hormones have the potential to improve glucose regulation and other abnormalities (e.g., weight gain, loss of beta-cell function) associated with type 2 diabetes. Topics: Animals; Biomedical Research; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Humans; Incretins; Insulin; Insulin Resistance; Insulin-Secreting Cells; Receptors, Glucagon | 2009 |
Aging and insulin secretion.
Glucose tolerance progressively declines with age, and there is a high prevalence of type 2 diabetes and postchallenge hyperglycemia in the older population. Age-related glucose intolerance in humans is often accompanied by insulin resistance, but circulating insulin levels are similar to those of younger people. Under some conditions of hyperglycemic challenge, insulin levels are lower in older people, suggesting beta-cell dysfunction. When insulin sensitivity is controlled for, insulin secretory defects have been consistently demonstrated in aging humans. In addition, beta-cell sensitivity to incretin hormones may be decreased with advancing age. Impaired beta-cell compensation to age-related insulin resistance may predispose older people to develop postchallenge hyperglycemia and type 2 diabetes. An improved understanding of the metabolic alterations associated with aging is essential for the development of preventive and therapeutic interventions in this population at high risk for glucose intolerance. Topics: Adult; Aged; Aged, 80 and over; Aging; Diabetes Mellitus, Type 2; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Intolerance; Humans; Insulin; Insulin Resistance; Insulin Secretion; Islets of Langerhans; Middle Aged; Nutrition Surveys; Peptide Fragments | 2003 |
[Hepatogenic diabetes--the current concepts of its pathophysiology and therapy].
Topics: Diabetes Mellitus; Diabetes Mellitus, Type 2; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Humans; Hypoglycemic Agents; Insulin Resistance; Liver; Liver Diseases; Peptide Fragments; Receptor, Insulin | 1999 |
5 trial(s) available for oxyntomodulin and Insulin-Resistance
Article | Year |
---|---|
Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial.
Tirzepatide, a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonist, shows a remarkable ability to lower blood glucose, enabling many patients with long-standing type 2 diabetes to achieve normoglycaemia. We aimed to understand the physiological mechanisms underlying the action of tirzepatide in type 2 diabetes.. This multicentre, randomised, double-blind, parallel-arm, phase 1 study was done at two centres in Germany. Eligible patients were aged 20-74 years, had type 2 diabetes for at least 6 months, and were being treated with lifestyle advice and stable doses of metformin, with or without one additional stable dose of another oral antihyperglycaemic medicine, 3 months before study entry. Via a randomisation table, patients were randomly assigned (3:3:2) to subcutaneously receive either tirzepatide 15 mg, semaglutide 1 mg, or placebo once per week. Endpoint measurements were done at baseline and the last week of therapy (week 28). The primary endpoint was the effect of tirzepatide versus placebo on the change in clamp disposition index (combining measures of insulin secretion and sensitivity) from baseline to week 28 of treatment and was analysed in the pharmacodynamic analysis set, which comprised all randomly assigned participants who received at least one dose of a study drug and had evaluable pharmacodynamic data. Safety was analysed in the safety population, which comprised all randomly assigned participants who received at least one dose of a study drug. Secondary endpoints included the effect of tirzepatide versus semaglutide on the change in clamp disposition index from baseline to week 28 of treatment, glucose control, total insulin secretion rate, M value (insulin sensitivity), and fasting and postprandial glucagon concentrations. Exploratory endpoints included the change in fasting and postprandial insulin concentrations. This study is registered with ClinicalTrials.gov, NCT03951753, and is complete.. Between June 28, 2019, and April 8, 2021, we screened 184 individuals and enrolled 117 participants, all of whom were included in the safety population (45 in the tirzepatide 15 mg group, 44 in the semaglutide 1 mg group, and 28 in the placebo group). Because of discontinuations and exclusions due to missing or unevaluable data, 39 patients in each treatment group and 24 patients in the placebo group comprised the pharmacodynamic analysis set. With tirzepatide, the clamp disposition index increased from a least squares mean of 0·3 pmol m. The glycaemic efficacy of GIP/GLP-1 receptor agonist tirzepatide in type 2 diabetes results from concurrent improvements in key components of diabetes pathophysiology, namely β-cell function, insulin sensitivity, and glucagon secretion. These effects were large and help to explain the remarkable glucose-lowering ability of tirzepatide seen in phase 3 studies.. Eli Lilly. Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Double-Blind Method; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin Resistance; Insulins; Islets of Langerhans; Treatment Outcome | 2022 |
Effect of once weekly dulaglutide by baseline beta-cell function in people with type 2 diabetes in the AWARD programme.
Glucagon-like peptide-1 receptor agonists lower blood glucose in type 2 diabetes (T2D) partially through glucose-dependent stimulation of insulin secretion. The aim of this study was to investigate whether beta-cell function (as measured by HOMA2-%B) at baseline affects the glycaemic response to dulaglutide. Dulaglutide-treated patients from AWARD-1, AWARD-3 and AWARD-6 clinical studies were categorised based on their homeostatic model assessment of beta-cell function (HOMA2-%B) tertiles. Changes in glycaemic measures in response to treatment with once-weekly dulaglutide were evaluated in each HOMA2-%B tertile. Patients with low HOMA2-%B had higher baseline glycated haemoglobin (HbA1c), fasting and postprandial blood glucose, and longer duration of diabetes (P < .001, all) (mean low, middle and high tertiles with dulaglutide 1.5 mg: HOMAB-2%B, 31%, 58%, 109%; HbA1c, 8.7%, 7.7%, 7.3%, respectively). At 26 weeks, the low tertile experienced larger reductions in HbA1c compared to the high tertile with dulaglutide 1.5 mg (mean; -1.55% vs. -0.98% [-16.94 vs. -10.71 mmol/mol]). Differences between low and high tertiles disappeared when adjusted for baseline HbA1c (LSM; -1.00 vs. -1.18% [-10.93 vs. -12.90 mmol/mol]). Greater decreases in fasting blood glucose and greater increases in fasting C-peptide were observed in the low tertile. Similar increases in HOMA2-%B were observed in all tertiles. Dulaglutide demonstrated clinically relevant HbA1c reduction irrespective of estimated baseline beta-cell function. Topics: Aged; Biomarkers; C-Peptide; Cohort Studies; Diabetes Mellitus, Type 2; Disease Progression; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Therapy, Combination; Female; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Immunoglobulin Fc Fragments; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Middle Aged; Recombinant Fusion Proteins | 2018 |
Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects.
Certain purified indigestible carbohydrates such as inulin have been shown to stimulate gut-derived hormones involved in glycaemic regulation and appetite regulation, and to counteract systemic inflammation through a gut microbiota-mediated mechanism. Less is known about the properties of indigestible carbohydrates intrinsic to food. The aim of this study was to investigate the possibility to affect release of endogenous gut hormones and ameliorate appetite control and glycaemic control by ingestion of a whole-grain cereal food product rich in NSP and resistant starch in healthy humans. In all, twenty middle-aged subjects were provided with a barley kernel-based bread (BB) or a reference white wheat bread during 3 consecutive days, respectively, in a randomised cross-over design study. At a standardised breakfast the following day (day 4), blood was collected for the analysis of blood (b) glucose regulation, gastrointestinal hormones, markers of inflammation and markers of colonic fermentation; 3 d of intervention with BB increased gut hormones in plasma (p) the next morning at fasting (p-glucagon-like peptide-1; 56%) and postprandially (p-glucagon-like peptide-2; 13% and p-peptide YY; 18%). Breath H₂ excretion and fasting serum (s) SCFA concentrations were increased (363 and 18%, respectively), and b-glucose (22%) and s-insulin responses (17%) were decreased after BB intervention. Insulin sensitivity index (ISI(composite)) was also improved (25%) after BB. In conclusion, 3 d of intervention with BB increased systemic levels of gut hormones involved in appetite regulation, metabolic control and maintenance of gut barrier function, as well as improved markers of glucose homoeostasis in middle-aged subjects, altogether relevant for the prevention of obesity and the metabolic syndrome. Topics: Aged; Appetite Regulation; Biomarkers; Bread; Breakfast; Cohort Studies; Colon; Cross-Over Studies; Elder Nutritional Physiological Phenomena; Female; Fermentation; Gastrointestinal Microbiome; Glucagon-Like Peptides; Hordeum; Humans; Inflammation Mediators; Insulin Resistance; Intestinal Mucosa; Male; Middle Aged; Peptide YY; Whole Grains | 2015 |
Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men.
To investigate whether features of the insulin resistance syndrome are associated with altered incretin responses to food intake.. From a population-based study, 35 men were recruited, representing a wide spectrum of insulin sensitivity and body weight. Each subject underwent a hyperinsulinemic-euglycemic clamp to determine insulin sensitivity. A mixed meal was given, and plasma levels of gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), as well as insulin, glucagon, and glucose were measured.. Insulin resistance was associated with impaired GIP and GLP-1 responses to a mixed meal. The total area under the curve (AUC) of the GIP response after the mixed meal was associated with insulin sensitivity (r = 0.54, P < 0.01). There was a significant difference between the highest and the lowest tertile of insulin sensitivity (P < 0.05). GLP-1 levels 15 min after food intake were significantly lower in the most insulin-resistant tertile compared with the most insulin-sensitive tertile. During the first hour, the AUC of GLP-1 correlated significantly with insulin sensitivity (r = 0.47, P < 0.01). Multiple linear regression analysis showed that insulin resistance, but not obesity, was an independent predictor of these decreased incretin responses.. In insulin resistance, the GIP and GLP-1 responses to a mixed meal are impaired and are related to the degree of insulin resistance. Decreased incretin responsiveness may be of importance for the development of impaired glucose tolerance. Topics: Adult; Biomarkers; Blood Glucose; Blood Pressure; Body Weight; Eating; Gastric Inhibitory Polypeptide; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Humans; Insulin; Insulin Resistance; Male; Middle Aged; Peptide Fragments; Postprandial Period; Protein Precursors; Regression Analysis | 2001 |
A novel hyperglycaemic clamp for characterization of islet function in humans: assessment of three different secretagogues, maximal insulin response and reproducibility.
Characterization of beta-cell function in humans is essential for identifying genetic defects involved in abnormal insulin secretion and the pathogenesis of type 2 diabetes.. We designed a novel test assessing plasma insulin and C-peptide in response to 3 different secretagogues. Seven lean, healthy volunteers twice underwent a 200 min hyperglycaemic clamp (10 mmol L-1) with administration of GLP-1 (1.5 pmol. kg-1. min-1) starting at 120 min and an arginine bolus at 180 min. We determined glucose-induced first and second-phase insulin secretion, GLP-1-stimulated insulin secretion, arginine-stimulated insulin response (increase above prestimulus, DeltaIarg) and the maximal, i. e. highest absolute, insulin concentration (Imax). Insulin sensitivity was assessed during second-phase hyperglycaemia. On a third occasion 6 subjects additionally received an arginine bolus at > 25 mM blood glucose, a test hitherto claimed to provoke maximal insulin secretion.. Insulin levels increased from 46 +/- 11 pM to 566 +/- 202 pM at 120 min, to 5104 +/- 1179 pM at 180 min and to maximally 8361 +/- 1368 pM after arginine (all P < 0.001). The within subject coefficients of variation of the different secretion parameters ranged from 10 +/- 3% to 16 +/- 6%. Except for second-phase which failed to correlate significantly with DeltaIarg (r = 0.52, P = 0.23) and Imax (r = 0.75, P = 0.053) all phases of insulin secretion correlated with one another. The insulin concentration after the arginine bolus at > 25 mM glucose (n = 6) was 2773 +/- 855 pM vs. 7562 +/- 1168 pM for Imax (P = 0.003).. This novel insulin secretion test elicits a distinct pattern of plasma insulin concentrations in response to the secretagogues glucose, GLP-1 and arginine and is highly reproducible and can be used for differential characterization of islet function. Topics: Adult; Arginine; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 2; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Clamp Technique; Humans; Hyperglycemia; Insulin; Insulin Resistance; Insulin Secretion; Islets of Langerhans; Male; Peptide Fragments; Protein Precursors; Reproducibility of Results | 2000 |
15 other study(ies) available for oxyntomodulin and Insulin-Resistance
Article | Year |
---|---|
Semaglutide and social media: implications for young women with polycystic ovarian syndrome.
Topics: Female; Glucagon-Like Peptides; Humans; Insulin Resistance; Polycystic Ovary Syndrome; Social Media | 2023 |
Combination Therapy With Semaglutide and Dapagliflozin as an Effective Approach for the Management of Type A Insulin Resistance Syndrome: A Case Report.
Type A insulin resistance (IR) syndrome is a very uncommon genetic disorder affecting the insulin receptor (INSR) gene, characterized by severe IR without the presence of obesity. Patients with this condition will eventually develop diabetes, presenting a variable response to insulin-sensitizers, such as metformin and thiazolidinediones, and high doses of insulin. We report for the first time the results of the use of combination therapy with a glucagon-like peptide-1 receptor agonist and a sodium-glucose cotransporter 2 inhibitor for the treatment of diabetes in the context of type A IR syndrome. Topics: Benzhydryl Compounds; Diabetes Mellitus; Glucagon-Like Peptides; Glucosides; Humans; Insulin; Insulin Resistance | 2022 |
Changes in Glucose Metabolism and Glycemic Status With Once-Weekly Subcutaneous Semaglutide 2.4 mg Among Participants With Prediabetes in the STEP Program.
This analysis of 3,375 adults with overweight/obesity across the Semaglutide Treatment Effect in People with obesity (STEP) 1, 3, and 4 trials evaluated whether more participants with prediabetes had normoglycemia after 68 weeks' treatment with once-weekly semaglutide 2.4 mg plus lifestyle intervention versus placebo and assessed changes in glucose metabolism in participants with prediabetes.. STEP 1, 3, and 4 were phase 3, 68-week, randomized, placebo-controlled, multinational trials; STEP 4 had a 20-week semaglutide run-in and 48-week randomized period. Analyses included changes (week 0-68; before the washout period) in glycemic status (prespecified: STEP 1 and 3; post hoc: STEP 4), and in HbA1c, fasting plasma glucose (FPG), and HOMA insulin resistance (HOMA-IR) among participants with prediabetes (post hoc).. Significantly more participants with baseline (week 0) prediabetes (n = 1,536) had normoglycemia at week 68 with semaglutide versus placebo (STEP 1, 84.1% vs. 47.8%; STEP 3, 89.5% vs. 55.0%; STEP 4, 89.8% vs. 70.4%; all P < 0.0001). Fewer participants with baseline normoglycemia had prediabetes at week 68 with semaglutide versus placebo (STEP 1, 2.9% vs. 10.9%; STEP 3, 3.2% vs. 5.8%; STEP 4, 1.1% vs. 5.0%). Semaglutide resulted in greater improvements in HbA1c, FPG, and HOMA-IR than placebo among participants with baseline prediabetes (all P < 0.01).. STEP 1, 3, and 4 collectively provide a robust assessment of the effects of semaglutide on glucose metabolism and prediabetes in a large cohort of adults with overweight/obesity while on treatment. Among participants with baseline prediabetes, 68 weeks' treatment with semaglutide versus placebo led to significant improvements in glucose metabolism and a higher likelihood of normoglycemia. Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Double-Blind Method; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin Resistance; Obesity; Overweight; Prediabetic State | 2022 |
Dulaglutide, a long-acting GLP-1 receptor agonist, can improve hyperandrogenemia and ovarian function in DHEA-induced PCOS rats.
The purpose of this study was to explore the effect of dulaglutide on DHEA induced PCOS rats and its mechanism, to provide new drugs and research directions for clinical treatment of PCOS.. In this study, the PCOS model was established by giving female SD rats subcutaneous injection of DHEA for 21 consecutive days. After modeling, the treatment group was injected subcutaneously with three doses of dulaglutide for 3 weeks. The model group was injected with sterile ultrapure water, and the normal group did not get any intervention. The body weight changes of rats in each group were recorded from the first day when rats received the administration of dulaglutide. Three weeks later, the rats were fasted the night after the last treatment, determined fasting insulin and fasting glucose the next day. After the rats were anesthetized by chloral hydrate, more blood was collected from the heart of the rat. The serum insulin, testosterone and sex hormone binding globulin (SHBG) levels were detected by the enzyme-linked immunoassay method. After removing the adipose tissue, the obtained rat ovary tissue was used for subsequent experimental detection, using HE staining for morphology and follicular development analysis; qRT-PCR for the detection of 3βHSD, CYP17α1, CYP19α1, and StAR gene expression in ovarian tissue; and western blotting analysis of CYP17α1, CYP19α1, StAR protein expression and insulin level to verify whether dulaglutide has a therapeutic effect on PCOS in rats.. After treated with different concentrations of dulaglutide, we found that the body weight of rats in the treatment groups were reduced. Compared with the rats in PCOS group, the serum androgen level of rats in the treatment groups was significantly decreased, and the serum sex hormone binding protein content was significantly increased, and there was statistically significant difference between these groups and PCOS group. In terms of protein expression and gene regulation, the expression of 3βHSD, CYP19α1 and StAR in the ovarian tissue of rats in treatment groups were decreased significantly after received the treatment of dulaglutide, and there was statistically significant difference between these groups and PCOS group. In addition, dulaglutide reduced the insulin content in the ovarian tissue of PCOS rats.. Dulaglutide may reduce the hyperandrogenemia of PCOS rats by regulating the content of serum SHBG and the expression of 3βHSD, CYP19α1, and StAR related genes and proteins, thereby inhibiting the excessive development of small follicles and the formation of cystic follicles in the ovaries of PCOS rats, thereby improving polycystic ovary in PCOS rats. In addition, dulaglutide may reduce the weight of PCOS rats, further reducing the level of high androgen in PCOS rats, and improving the morphology of their polycystic ovaries. Topics: Animals; Body Weight; Dehydroepiandrosterone; Disease Models, Animal; Female; Gene Expression Regulation; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Immunoglobulin Fc Fragments; Insulin Resistance; Ovary; Ovulation; Phosphoproteins; Polycystic Ovary Syndrome; Rats, Sprague-Dawley; Recombinant Fusion Proteins; Sex Hormone-Binding Globulin; Steroid 17-alpha-Hydroxylase; Testosterone | 2021 |
Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH).
Palmitic acid is an important risk factor for the pathogenesis of non-alcoholic steatohepatitis (NASH), but changes in palmitic acid intestinal absorption in NASH are unclear. The aim of this study was to clarify changes in palmitic acid intestinal absorption and their association with the pathogenesis of NASH.. A total of 106 participants were recruited to the study, of whom 33 were control subjects (control group), 32 were patients with NASH Brunt stage 1-2 [early NASH (e-NASH)], and 41 were patients with NASH Brunt stage 3-4 [advanced NASH (a-NASH)].. Overall,. Significantly upregulated palmitic acid absorption by activation of its transporters was evident in patients with NASH, and clinical progression of NASH was related to palmitic acid absorption. These dietary changes are associated with the onset and progression of NASH. Topics: Adult; Aged; Apolipoprotein B-48; Apolipoproteins A; Breath Tests; Carbon Radioisotopes; Carrier Proteins; Case-Control Studies; Caveolin 1; CD36 Antigens; Chylomicrons; Endoribonucleases; Fatty Acid Transport Proteins; Fatty Acid-Binding Proteins; Female; Glucagon-Like Peptides; Humans; Insulin Resistance; Intestinal Absorption; Jejunum; Liver Cirrhosis; Male; Membrane Proteins; Middle Aged; Monomeric GTP-Binding Proteins; Non-alcoholic Fatty Liver Disease; Palmitic Acids; Protein Serine-Threonine Kinases; RNA, Messenger | 2017 |
Differential effects of once-weekly glucagon-like peptide-1 receptor agonist dulaglutide and metformin on pancreatic β-cell and insulin sensitivity during a standardized test meal in patients with type 2 diabetes.
This substudy of the AWARD-3 trial evaluated the effects of the once-weekly glucagon-like peptide-1 receptor agonist, dulaglutide, versus metformin on glucose control, pancreatic function and insulin sensitivity, after standardized test meals in patients with type 2 diabetes. Meals were administered at baseline, 26 and 52 weeks to patients randomized to monotherapy with dulaglutide 1.5 mg/week (n = 133), dulaglutide 0.75 mg/week (n = 136), or metformin ≥1500 mg/day (n = 140). Fasting and postprandial serum glucose, insulin, C-peptide and glucagon levels were measured up to 3 h post-meal. β-cell function and insulin sensitivity were assessed using empirical variables and mathematical modelling. At 26 weeks, similar decreases in area under the curve for glucose [AUCglucose (0-3 h)] were observed among all groups. β-cell function [AUCinsulin /AUCglucose (0-3 h)] increased with dulaglutide and was unchanged with metformin (p ≤ 0.005, both doses). Dulaglutide improved insulin secretion rate at 9 mmol/l glucose (p ≤ 0.04, both doses) and β-cell glucose sensitivity (p = 0.004, dulaglutide 1.5 mg). Insulin sensitivity increased more with metformin versus dulaglutide. In conclusion, dulaglutide improves postprandial glycaemic control after a standardized test meal by enhancing β-cell function, while metformin exerts a greater effect on insulin sensitivity. Topics: Adult; Aged; Area Under Curve; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 2; Fasting; Female; Glucagon; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Immunoglobulin Fc Fragments; Insulin; Insulin Resistance; Insulin-Secreting Cells; Male; Metformin; Middle Aged; Postprandial Period; Recombinant Fusion Proteins; Treatment Outcome | 2016 |
Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus.
Glucose in the gut lumen activates gut endocrine cells to release 5-HT, glucagon-like peptide 1/2 (GLP-1/2), and glucose-dependent insulinotropic polypeptide (GIP), which act to change gastrointestinal function and regulate postprandial plasma glucose. There is evidence that both release and action of incretin hormones is reduced in type 2 diabetes (T2D). We measured cellular activation of enteroendocrine and enterochromaffin cells, enteric neurons, and vagal afferent neurons in response to intestinal glucose in a model of type 2 diabetes mellitus, the UCD-T2DM rat. Prediabetic (PD), recent-diabetic (RD, 2 wk postonset), and 3-mo diabetic (3MD) fasted UCD-T2DM rats were given an orogastric gavage of vehicle (water, 0.5 ml /100 g body wt) or glucose (330 μmol/100 g body wt); after 6 min tissue was removed and cellular activation was determined by immunohistochemistry for phosphorylated calcium calmodulin-dependent kinase II (pCaMKII). In PD rats, pCaMKII immunoreactivity was increased in duodenal 5-HT (P < 0.001), K (P < 0.01) and L (P < 0.01) cells in response to glucose; glucose-induced activation of all three cell types was significantly reduced in RD and 3MD compared with PD rats. Immunoreactivity for GLP-1, but not GIP, was significantly reduced in RD and 3MD compared with PD rats (P < 0.01). Administration of glucose significantly increased pCaMKII in enteric and vagal afferent neurons in PD rats; glucose-induced pCaMKII immunoreactivity was attenuated in enteric and vagal afferent neurons (P < 0.01, P < 0.001, respectively) in RD and 3MD. These data suggest that glucose sensing in enteroendocrine and enterochromaffin cells and activation of neural pathways is markedly impaired in UCD-T2DM rats. Topics: Afferent Pathways; Animals; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Diabetes Mellitus, Type 2; Disease Models, Animal; Enterochromaffin Cells; Enteroendocrine Cells; Gastric Inhibitory Polypeptide; Glucagon-Like Peptides; Glucose; Insulin Resistance; Obesity; Rats; Rats, Sprague-Dawley; Rats, Zucker; Serotonin; Vagus Nerve | 2012 |
Possible therapeutic potential of berberine in diabetic osteopathy.
Diabetic osteopathy is a complication that leads to decreased bone mineral density, bone formation and having high risk of fractures that heals slowly. Diabetic osteopathy is a result of increase in osteoclastogenesis and decrease in osteoblastogenesis. Various factors viz., oxidative stress, increased inflammatory markers, PPAR-γ activation in osteoblast, activation of apoptotic pathway, increased glucose levels and inhibitory effect on parathyroid hormone etc. are mainly responsible for decreased bone mineral density. Berberine is an isoquinoline alkaloid widely used in Asian countries as a traditional medicine. Berberine is extensively reported to be an antioxidant, anti-inflammatory, antidiabetic, and having potential to treat diabetic complications and glucocorticoid induced osteoporosis. The osteoclastogenesis decreasing property of berberine can be hypothesized for inhibiting diabetic osteopathy. In addition, chronic treatment of berberine will be helpful for increasing the osteoblastic activity and expression of the modulators that affect osteoblastic differentiation. The apoptotic pathways stimulated due to increased inflammatory markers and nucleic acid damages could be reduced due to berberine. Another important consideration that berberine is having stimulatory effect on glucagon like peptide release and insulin sensitization that will be helpful for decreasing glucose levels and therefore, may exerts osteogenesis. Thiazolidinediones show bone loss due to activation of PPAR-γ in osteoblasts, whereas berberine stimulates PPAR-γ only in adipocytes and not in osteoblasts, and therefore the decreased bone loss due to use of thiazolidinediones may not be observed in berberine treatment conditions. Berberine decreases the advanced glycation end-products (AGE) formation in diabetic condition which will be ultimately helpful to decrease the stiffness of collagen fibers due to AGE-induced cross linking. Lastly, it is also reported that berberine has inhibitory effect on parathyroid hormone and enhances marker genes like osteocalcin, which are responsible for the osteoblastic activity. From these evidences, we hypothesized that berberine may have potential in the treatment of diabetic osteopathy. Topics: Berberine; Calcitonin; Diabetes Complications; Glucagon-Like Peptides; Glycation End Products, Advanced; Humans; Hyperglycemia; Inflammation Mediators; Insulin Resistance; Models, Biological; Obesity; Osteogenesis; Osteoporosis; Oxidative Stress; Parathyroid Hormone; PPAR gamma; Somatomedins | 2012 |
[Insulin resistance treatments in the future].
Present treatment strategies of type 2 diabetes are unsatisfactory. At diagnosis, most oral antidiabetic agents are effective on blood glucose control, but with time metabolic control deteriorates whatever therapeutic modality is used. The reasons for treatment failure are the natural history of the disease and the necessary implication of the patient in the management of blood glucose control on a constant basis. News treatments thus have to be developed acting on either insulin resistance or insulin secretion or both. We discuss here present and future developments which aim to decrease insulin resistance. In the last 10 years, multiple therapeutic targets have been identified in appetite control, such as the endocannabinoid system and glucagon-like-peptide 1, in insulin signalling and in the control of cellular energy balance such as AMP kinase. These developments should allow a better management of type 2 diabetes and its complications. Topics: Adenylate Kinase; Blood Glucose; Diabetes Mellitus, Type 2; Glucagon-Like Peptides; Humans; Insulin; Insulin Resistance; Insulin Secretion; Kinetics; Receptor, Insulin; Renin-Angiotensin System; Signal Transduction | 2007 |
Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP.
Among the products of enteroendocrine cells are the incretins glucagon-like peptide-1 (GLP-1, secreted by L cells) and glucose-dependent insulinotropic peptide (GIP, secreted by K cells). These are key modulators of insulin secretion, glucose homeostasis, and gastric emptying. Because of the rapid early rise of GLP-1 in plasma after oral glucose, we wished to definitively establish the absence or presence of L cells, as well as the relative distribution of the incretin cell types in human duodenum. We confirmed the presence of proglucagon and pro-GIP genes, their products, and glucosensory molecules by tissue immunohistochemistry and RT-PCR of laser-captured, single duodenal cells. We also assayed plasma glucose, incretin, and insulin levels in subjects with normal glucose tolerance and type 2 diabetes for 120 min after they ingested 75 g of glucose. Subjects with normal glucose tolerance (n=14) had as many L cells (15+/-1), expressed per 1,000 gut epithelial cells, as K cells (13+/-1), with some containing both hormones (L/K cells, 5+/-1). In type 2 diabetes, the number of L and L/K cells was increased (26+/-2; P<0.001 and 9+/-1; P < 0.001, respectively). Both L and K cells contained glucokinase and glucose transporter-1, -2, and -3. Newly diagnosed type 2 diabetic subjects had increased plasma GLP-1 levels between 20 and 80 min, concurrently with rising plasma insulin levels. Significant coexpression of the main incretin peptides occurs in human duodenum. L and K cells are present in equal numbers. New onset type 2 diabetes is associated with a shift to the L phenotype. Topics: Adult; Aged; Aged, 80 and over; Area Under Curve; Biopsy; Diabetes Mellitus, Type 2; Duodenum; Enteroendocrine Cells; Enzyme-Linked Immunosorbent Assay; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Humans; Immunohistochemistry; Insulin; Insulin Resistance; Male; Middle Aged; Peptide Fragments; Reverse Transcriptase Polymerase Chain Reaction | 2006 |
Elevated glucagon-like peptide-1-(7-36)-amide, but not glucose, associated with hyperinsulinemic compensation for fat feeding.
We previously developed a canine model of central obesity and insulin resistance by supplementing the normal chow diet with 2 g cooked bacon grease/kg body weight. Dogs fed this fatty diet maintained glucose tolerance with compensatory hyperinsulinemia. The signal(s) responsible for this up-regulation of plasma insulin is unknown. We hypothesized that meal-derived factors such as glucose, fatty acids, or incretin hormones may signal beta-cell compensation in the fat-fed dog. We fed the same fat-supplemented diet for 12 wk to six dogs and compared metabolic responses with seven control dogs fed a normal diet. Fasting and stimulated fatty acid and glucose-dependent insulinotropic peptide concentrations were not increased by fat feeding, whereas glucose was paradoxically decreased, ruling out those three factors as signals for compensatory hyperinsulinemia. Fasting plasma glucagon-like peptide-1 (GLP-1) concentration was 2.5-fold higher in the fat-fed animals, compared with controls, and 3.4-fold higher after a mixed meal. Additionally, expression of the GLP-1 receptor in whole pancreas was increased 2.3-fold in the fat-fed dogs. The increase in both circulating GLP-1 and its target receptor may have increased beta-cell responsiveness to lower glucose. Glucose is not the primary cause of hyperinsulinemia in the fat-fed dog. Corequisite meal-related signals may be permissive for development of hyperinsulinemia. Topics: Animals; Blood Glucose; Blotting, Northern; Dietary Fats; Dogs; Fasting; Fatty Acids, Nonesterified; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Hyperinsulinism; Insulin; Insulin Resistance; Islets of Langerhans; Kinetics; Magnetic Resonance Imaging; Male; Obesity; Peptide Fragments; Receptors, Glucagon; Reverse Transcriptase Polymerase Chain Reaction | 2002 |
Abnormal release of incretins and cortisol after oral glucose in subjects with insulin-resistant myotonic dystrophy.
Although the incretins, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), as well as glucagon and cortisol, are known to influence islet function, the role of these hormones in conditions of insulin resistance and development of type 2 diabetes is unknown. An interesting model for the study of hormonal perturbations accompanying marked insulin resistance without concomitant diabetes is myotonic dystrophy (DM1).. The work was carried out in an out-patient setting.. An oral glucose tolerance test was performed in 18 males with DM1 and 18 controls to examine the release of incretins and counter-regulatory hormones. Genetic analyses were also performed in patients.. We found that the increment in GLP-1 after oral glucose was significantly greater in patients, while there was no significant difference in GIP or glucagon responses between patients and controls, although long CTG repeat expansions were associated with a more pronounced GIP response. Interestingly, the GLP-1 response to oral glucose correlated with the insulin response in patients but not in controls whereas, in controls, the insulin response closely correlated with the GIP response. Furthermore, cortisol and ACTH levels increased paradoxically in patients after glucose; this was more pronounced in patients with long CTG repeat expansions.. This study showed that the GLP-1 and ACTH/cortisol responses to oral glucose are abnormal in insulin-resistant DM1 patients and that CTG triplet repeats are linked to GIP release. These abnormalities may contribute both to the severe insulin resistance and hyperinsulinemia in DM1 and to the preservation of adequate islet function, enabling glucose tolerance to be normal in spite of this marked insulin resistance in DM1. Topics: Adult; Body Composition; DNA; Dose-Response Relationship, Drug; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Humans; Hydrocortisone; Insulin Resistance; Male; Middle Aged; Myotonic Dystrophy; Peptide Fragments; Regression Analysis; Repetitive Sequences, Nucleic Acid | 2002 |
The role of postprandial releases of insulin and incretin hormones in meal-induced satiety--effect of obesity and weight reduction.
Previous studies have indicated that the secretion of the intestinal satiety hormone glucagon-like peptide-1 (GLP-1) is attenuated in obese subjects.. To compare meal-induced response of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) in obese and lean male subjects, to investigate the effect of a major weight reduction in the obese subjects, and to look for an association between these hormones and ad libitum food intake.. Plasma concentrations of intestinal hormones and appetite sensations were measured prior to, and every 30 min for 180 min after, ingestion of a 2.5 MJ solid test meal. Gastric emptying was estimated scintigraphically. An ad libitum lunch was served 3 h after the test meal.. Nineteen non-diabetic obese (body mass index (BMI) 34.1--43.8 kg/m(2)) and 12 lean (BMI 20.4--24.7 kg/m(2)) males. All obese subjects were re-examined after a mean stabilised weight loss of 18.8 kg (95% CI 14.4--23.2).. Total area under the GLP-1 response curve (AUC(total, GLP-1)) was lower in obese before and after the weight loss compared to lean subjects (P<0.05), although weight loss improved the response from 80 to 88% of that of the lean subjects (P=0.003). The GIP response was similar in obese and lean subjects. However, after the weight loss both AUC(total, GIP) and AUC(incremental, GIP) were lowered (P<0.05). An inverse correlation was observed between AUC(incremental, GIP) and energy intake at the subsequent ad libitum meal in all groups. In lean subjects ad libitum energy intake was largely predicted by the insulin response to the preceding meal (r(2)=0.67, P=0.001).. Our study confirmed previous findings of a reduced postprandial GLP-1 response in severely obese subjects. Following weight reduction, GLP-1 response in the obese subjects apparently rose to a level between that of obese and lean subjects. The data suggests that postprandial insulin and GIP responses are key players in short-term appetite regulation. Topics: Absorptiometry, Photon; Adult; Appetite; Area Under Curve; Energy Intake; Gastric Emptying; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Resistance; Insulin Secretion; Male; Middle Aged; Obesity; Peptide Fragments; Postprandial Period; Satiation; Weight Loss | 2001 |
Effect of large bowel fermentation on insulin, glucose, free fatty acids, and glucagon-like peptide 1 (7-36) amide in patients with coronary heart disease.
Insulin resistance syndrome has recently been described as a unifying hypothesis to explain the relationship between the many risk factors of coronary heart disease. Carbohydrate that is malabsorbed and fermented in the colon has been demonstrated to decrease insulin response to a glucose load and improve other risk factors associated with coronary heart disease, although the mechanism remains unclear. The object of the present study was to investigate whether this observation could be explained by the production of fermentation products induced by malabsorbed carbohydrate in the colon, or by stimulating the incretin glucagon-like peptide 1 (7-36) amide that is released from the large bowel. We used lactulose as a model for resistant starch carbohydrate. Ten insulin-resistant male volunteers, who had undergone previous coronary artery bypass grafting, volunteered to take part in the study and underwent 6 d of lactulose loading (15 g/d for 2 d and 30 g/d for 4 d). There was no significant change in insulin, glucose, free fatty acids, or glucagon-like peptide 1 (7-36) amide response to an oral glucose tolerance test following the lactulose despite a significant rise in breath hydrogen. Large bowel fermentation stimulated by lactulose appears to have no significant effect on insulin, glucose, free fatty acids, and glucagon-like peptide 1 (7-36) response in patients with coronary heart disease. Topics: Aged; Blood Glucose; Coronary Disease; Fatty Acids, Nonesterified; Fermentation; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Tolerance Test; Humans; Insulin; Insulin Resistance; Intestinal Absorption; Intestine, Large; Lactulose; Male; Middle Aged; Peptide Fragments; Risk Factors | 1999 |
Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice.
Mice with a targeted mutation of the gastric inhibitory polypeptide (GIP) receptor gene (GIPR) were generated to determine the role of GIP as a mediator of signals from the gut to pancreatic beta cells. GIPR-/- mice have higher blood glucose levels with impaired initial insulin response after oral glucose load. Although blood glucose levels after meal ingestion are not increased by high-fat diet in GIPR+/+ mice because of compensatory higher insulin secretion, they are significantly increased in GIPR-/- mice because of the lack of such enhancement. Accordingly, early insulin secretion mediated by GIP determines glucose tolerance after oral glucose load in vivo, and because GIP plays an important role in the compensatory enhancement of insulin secretion produced by a high insulin demand, a defect in this entero-insular axis may contribute to the pathogenesis of diabetes. Topics: Administration, Oral; Animals; Diabetes Mellitus, Type 2; Dietary Fats; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Intolerance; Glucose Tolerance Test; Homeostasis; Injections, Intraperitoneal; Insulin; Insulin Resistance; Insulin Secretion; Intestines; Islets of Langerhans; Mice; Mice, Knockout; Models, Biological; Peptide Fragments; Protein Precursors; Receptors, Gastrointestinal Hormone | 1999 |