oxyntomodulin has been researched along with Diabetes-Mellitus--Type-1* in 31 studies
4 review(s) available for oxyntomodulin and Diabetes-Mellitus--Type-1
Article | Year |
---|---|
GLP-1 Agonists in Type 1 Diabetes Mellitus.
To review the use of GLP-1 agonists in patients with type 1 diabetes mellitus (T1DM).. A search using the MEDLINE database, EMBASE, and Cochrane Database was performed through March 2016 using the search terms glucagon-like peptide 1 (GLP-1) agonists, incretin, liraglutide, exenatide, albiglutide, dulaglutide, type 1 diabetes mellitus. All English-language trials that examined glycemic end points using GLP-1 agonists in humans with T1DM were included.. A total of 9 clinical trials examining the use of GLP-1 agonists in T1DM were identified. On average, hemoglobin A1C (A1C) was lower than baseline, with a maximal lowering of 0.6%. This effect was not significant when tested against a control group, with a relative decrease in A1C of 0.1% to 0.2%. In all trials examined, reported hypoglycemia was low, demonstrating no difference when compared with insulin monotherapy. Weight loss was seen in all trials, with a maximum weight loss of 6.4 kg over 24 weeks. Gastrointestinal adverse effects are potentially limiting, with a significant number of patients in trials reporting nausea.. The use of GLP-1 agonists should be considered in T1DM patients who are overweight or obese and not at glycemic goals despite aggressive insulin therapy; however, tolerability of these agents is a potential concern. Liraglutide has the strongest evidence for use and would be the agent of choice for use in overweight or obese adult patients with uncontrolled T1DM. Topics: Blood Glucose; Diabetes Mellitus, Type 1; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hypoglycemia; Hypoglycemic Agents; Immunoglobulin Fc Fragments; Incretins; Liraglutide; Peptides; Recombinant Fusion Proteins; Venoms | 2016 |
Diabetes: Advances in Diagnosis and Treatment.
Chronic diseases have overtaken acute diseases, such as infections, as the major cause of premature mortality worldwide. Diabetes mellitus, a chronic degenerative metabolic disease, has reached epidemic proportions in the past 30 years, with worldwide prevalence approaching 400 million people.. The epidemic is largely secondary to an increasing sedentary lifestyle and highly prevalent overweight and obesity contributing to the development of type 2 diabetes. Clinical research efforts have developed and demonstrated effective strategies for prevention, and the annual incidence of diabetes in the United States may be decreasing for the first time in 3 decades. The long-term complications of diabetes cause severe morbidity and mortality. Here too the means of reducing the burden of microvascular and cardiovascular disease have been proved.. Improved glycemic control and better management of other identified risk factors for the complications of diabetes and more effective treatment of cardiovascular disease and microvascular complications have resulted in a more optimistic outlook for people with diabetes. This review focuses on recent advances in diagnosis and management and the remaining challenges in the prevention and treatment of diabetes mellitus. Topics: Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Hyperglycemia; Hypoglycemic Agents; Insulin; Prediabetic State; Risk Factors; Sodium-Glucose Transport Proteins; Thiazolidinediones | 2015 |
GLP-1R agonist therapy for diabetes: benefits and potential risks.
Glucagon-like peptide 1 receptor (GLP-1R) agonists provide good glycemic control combined with low hypoglycemia risk and weight loss. Here, we summarize the recently published data for this therapy class, focusing on sustainability of action, use in combination with basal insulin, and the efficacy of longer acting agents currently in development. The safety profile of GLP-1R agonists is also examined.. GLP-1R agonists provide sustained efficacy and their combination with basal insulin is well tolerated, providing additional glycemic control and weight benefits compared with basal insulin alone. Data suggest that the convenience of longer acting agents may be at the expense of efficacy. Despite the initial concerns, most evidence indicates that GLP-1R agonists do not increase the risk of pancreatitis or thyroid cancer. However, the extremely low incidence of these events means further investigations are required before a causal link can be eliminated. Large-scale clinical trials investigating the long-term cardiovascular safety of this therapy class are ongoing and may also provide important insights into pancreatic and thyroid safety.. GLP-1R agonists offer sustained glycemic efficacy, weight loss benefits, and a low risk of hypoglycemia. The results of ongoing trials should help to clarify the safety of this therapy class. Topics: Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hypoglycemia; Hypoglycemic Agents; Immunoglobulin Fc Fragments; Insulin; Liraglutide; Male; Pancreatitis; Peptides; Randomized Controlled Trials as Topic; Recombinant Fusion Proteins; Thyroid Neoplasms; Treatment Outcome; Venoms | 2013 |
Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus.
A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. DP IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 human diabetics. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion and important effects on beta-cell differentiation, mitogenesis and survival, by the incretins and other DP IV-sensitive peptides, can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetics. Topics: Amino Acid Sequence; Animals; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Humans; Molecular Sequence Data; Peptide Fragments; Protease Inhibitors | 2006 |
8 trial(s) available for oxyntomodulin and Diabetes-Mellitus--Type-1
Article | Year |
---|---|
Efficacy and safety of dulaglutide in patients with absolute insulin deficiency.
While dulaglutide has been approved inpatients with type 2 diabetes (T2DM) in combination with insulin, it has not been studied in insulin-deficient patients, not whether they have type 1 diabetes (T1DM) or T2DM. The aim of this study is to assess the efficacy and safety of dulaglutide 0.75 mg/once weekly (QW) in patients with absolute insulin deficiency (n=10).. Significant reductions of HbA1c (9.30±1.03% to 8.61±1.21%; p<0.02) and body mass index (BMI; 23.61±3.95 to 23.41±4.24; p<0.02) levels were observed at 3 months with the addition of dulaglutide to the existing pharmacotherapy. However, in all the patients, post-meal C-peptide levels remained undetectable. One patient had gastrointestinal adverse events and discontinue dulaglutide within the first month. One patient was a non-responder, who had little if any changes in HbA1c levels at 3 months.. The results indicate that dulaglutide is effective in patients with T1DM or T2DM with absolute insulin deficiency, though gastrointestinal adverse events might be of concern. The improvements in glycemic control could not be due to enhanced insulin secretion, but may be as a result of a combination of the other effects of glucagon like peptide 1 (GLP-1), such as postprandial glucagon suppression, delayed gastric emptying, and weight loss. Topics: Aged; Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Drug Administration Schedule; Drug Therapy, Combination; Female; Glucagon-Like Peptides; Glycated Hemoglobin; Humans; Immunoglobulin Fc Fragments; Insulin; Male; Middle Aged; Recombinant Fusion Proteins; Treatment Outcome | 2019 |
Topics: Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Double-Blind Method; Drug Administration Schedule; Glucagon-Like Peptides; Humans; Hyperglycemia; Insulin Aspart | 2016 |
Effect of glucagon-like peptide 1 (7-36 amide) on insulin-mediated glucose uptake in patients with type 1 diabetes.
To examine the insulinomimetic insulin-independent effects of glucagon-like peptide (GLP)-1 on glucose uptake in type 1 diabetic patients.. We used the hyperinsulinemic-euglycemic clamp (480 pmol. m(-2) x min(-1)) in paired randomized studies of six women and five men with type 1 diabetes. In the course of one of the paired studies, the subjects also received GLP-1 at a dose of 1.5 pmol. kg(-1) x min(-1). The patients were 41 +/- 3 years old with a BMI of 25 +/- 1 kg/m(2). The mean duration of diabetes was 23 +/- 3 years.. Plasma glucose was allowed to fall from a fasting level of approximately 11 mmol/l to 5.3 mmol/l in each study and thereafter was held stable at that level. Plasma insulin levels during both studies were approximately 900 pmol/l. Plasma C-peptide levels did not change during the studies. In the GLP-1 study, plasma total GLP-1 levels were elevated from the fasting level of 31 +/- 3 to 150 +/- 17 pmol/l. Plasma glucagon levels fell from the fasting levels of approximately 14 pmol/l to 9 pmol/l during both paired studies. Hepatic glucose production was suppressed during the glucose clamps in all studies. Glucose uptake was not different between the two studies ( approximately 40 micromol. kg(-1) x min(-1)).. GLP-1 does not augment insulin-mediated glucose uptake in lean type 1 diabetic patients. Topics: Adult; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Humans; Hyperinsulinism; Insulin; Liver; Male; Neurotransmitter Agents; Peptide Fragments; Peptides | 2003 |
The pathophysiology of diabetes involves a defective amplification of the late-phase insulin response to glucose by glucose-dependent insulinotropic polypeptide-regardless of etiology and phenotype.
The effect of the insulinotropic incretin hormone, glucagon-like peptide-1 (GLP-1), is preserved in typical middle-aged, obese, insulin-resistant type 2 diabetic patients, whereas a defective amplification of the so-called late-phase plasma insulin response (20-120 min) to glucose by the other incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is seen in these patients. The aim of the present investigation was to evaluate plasma insulin and C-peptide responses to GLP-1 and GIP in five groups of diabetic patients with etiology and phenotype distinct from the obese type 2 diabetic patients. We studied (six in each group): 1) patients with diabetes mellitus secondary to chronic pancreatitis; 2) lean type 2 diabetic patients (body mass index < 25 kg/m(2)); 3) patients with latent autoimmune diabetes in adults; 4) diabetic patients with mutations in the HNF-1alpha gene [maturity-onset diabetes of the young (MODY)3]; and 5) newly diagnosed type 1 diabetic patients. All participants underwent three hyperglycemic clamps (2 h, 15 mM) with continuous infusion of saline, 1 pmol GLP-1 (7-36)amide/kg body weight.min or 4 pmol GIP pmol/kg body weight.min. The early-phase (0-20 min) plasma insulin response tended to be enhanced by both GIP and GLP-1, compared with glucose alone, in all five groups. In contrast, the late-phase (20-120 min) plasma insulin response to GIP was attenuated, compared with the plasma insulin response to GLP-1, in all five groups. Significantly higher glucose infusion rates were required during the late phase of the GLP-1 stimulation, compared with the GIP stimulation. In conclusion, lack of GIP amplification of the late-phase plasma insulin response to glucose seems to be a consequence of diabetes mellitus, characterizing most, if not all, forms of diabetes. Topics: Adult; Aged; Blood Glucose; C-Peptide; Chronic Disease; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; DNA-Binding Proteins; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Hepatocyte Nuclear Factor 1; Hepatocyte Nuclear Factor 1-alpha; Hepatocyte Nuclear Factor 1-beta; Humans; Hyperglycemia; Insulin; Islets of Langerhans; Male; Middle Aged; Neurotransmitter Agents; Nuclear Proteins; Pancreatitis; Peptide Fragments; Phenotype; Protein Precursors; Transcription Factors | 2003 |
Impaired beta-cell function, incretin effect, and glucagon suppression in patients with type 1 diabetes who have normal fasting glucose.
We have recently described a novel phenotype in a group of subjects with type 1 diabetes that is manifested by glucose >11.1 mmol/l 120 min after an oral glucose load, but with normal fasting glucose levels. We now describe the metabolic characteristics of these subjects by comparing parameters of islet hormone secretion and glucose disposal in these subjects to age-matched nondiabetic control subjects. The patients with type 1 diabetes had fasting glucose, insulin, and glucagon values similar to those of control subjects. Additionally, the insulin secretory response to intravenous arginine at euglycemia was similar in the control and diabetic groups (264 +/- 33.5 and 193 +/- 61.3 pmol/l; P = 0.3). However, marked differences in beta-cell function were found in response to hyperglycemia. Specifically, the first-phase insulin response was lower in diabetic subjects (329.1 +/- 39.6 vs. 91.3 +/- 34.1 pmol/l; P < 0.001), as was the slope of glucose potentiation of the insulin response to arginine (102 +/- 18.7 vs. 30.2 +/- 6.1 pmol/l per mmol/l; P = 0.005) and the maximum insulin response to arginine (2,524 +/- 413 vs. 629 +/- 159 pmol/l; P = 0.001). Although plasma levels of glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) did not differ between control and diabetic subjects, the incretin effect was lower in the diabetic patients (70.3 +/- 5.4 vs. 52.1 +/- 5.9%; P = 0.03). Finally, there was a lack of suppression of glucagon in the patients after both oral and intravenous glucose administration, which may have contributed to their postprandial hyperglycemia. Glucose effectiveness did not differ between patients and control subjects, nor did insulin sensitivity, although there was a tendency for the patients to be insulin resistant (9.18 +/- 1.59 vs. 5.22 +/- 1.17 pmol.(-1).min(-1); P = 0.08). These data characterize a novel group of subjects with type 1 diabetes manifested solely by hyperglycemia following an oral glucose load in whom islet function is normal at euglycemia, but who have marked defects in both alpha- and beta-cell secretion at hyperglycemia. This pattern of abnormalities may be characteristic of islet dysfunction early in the development of type 1 diabetes. Topics: Arginine; Autoantibodies; Blood Glucose; Diabetes Mellitus, Type 1; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose Clamp Technique; Glucose Tolerance Test; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Peptide Fragments; Reference Values | 2002 |
Effect of nutrient ingestion on glucagon-like peptide 1 (7-36 amide) secretion in human type 1 and type 2 diabetes.
Exogenous glucagon-like peptide 1(GLP-1) bioactivity is preserved in type 2 diabetic patients, resulting the peptide administration in a near-normalization of plasma glucose mainly through its insulinotropic effect. GLP-1 also reduces meal-related insulin requirement in type 1 diabetic patients, suggesting an impairment of the entero-insular axis in both diabetic conditions. To investigate this metabolic dysfunction, we evaluated endogenous GLP-1 concentrations, both at fasting and in response to nutrient ingestion, in 16 type 1 diabetic patients (age = 40.5 +/- 14yr, HbA1C = 7.8 +/- 1.5%), 14 type 2 diabetics (age = 56.5 +/- 13yr, HbA1C = 8.1 +/- 1.8%), and 10 matched controls. In postabsorptive state, a mixed breakfast (230 KCal) was administered to all subjects and blood samples were collected for plasma glucose, insulin, C-peptide and GLP-1 determination during the following 3 hours. In normal subjects, the test meal induced a significant increase of GLP-1 (30', 60': p < 0.01), returning the peptide values towards basal concentrations. In type 2 diabetic patients, fasting plasma GLP-1 was similar to controls (102.1 +/- 1.9 vs. 97.3 +/- 4.01 pg/ml), but nutrient ingestion failed to increase plasma peptide levels, which even decreased during the test (p < 0.01). Similarly, no increase in postprandial GLP-1 occurred in type 1 diabetics, in spite of maintained basal peptide secretion (106.5 +/- 1.5 pg/ml). With respect to controls, the test meal induced in both diabetic groups a significant increase in plasma glucagon levels at 60' (p < 0.01). In conclusion, either in condition of insulin resistance or insulin deficiency chronic hyperglycemia, which is a common feature of both metabolic disorders, could induce a progressive desensitization of intestinal L-cells with consequent peptide failure response to specific stimulation. Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Eating; Female; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Male; Middle Aged; Peptide Fragments; Radioimmunoassay | 2000 |
Subcutaneous glucagon-like peptide I combined with insulin normalizes postcibal glycemic excursions in IDDM.
Topics: Adult; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Drug Therapy, Combination; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hypoglycemic Agents; Injections, Subcutaneous; Insulin; Male; Middle Aged; Pancreatic Polypeptide; Peptide Fragments; Time Factors | 1997 |
Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients.
Glucagon-like peptide I(7-36) amide (GLP-1) is a physiological incretin hormone that, in slightly supraphysiological doses, stimulates insulin secretion, lowers glucagon concentrations, and thereby normalizes elevated fasting plasma glucose concentrations in type II diabetic patients. It is not known whether GLP-1 has effects also in fasting type I diabetic patients.. In 11 type I diabetic patients (HbA1c 9.1 +/- 2.1%; normal, 4.2-6.3%), fasting hyperglycemia was provoked by halving their usual evening NPH insulin dose. In random order on two occasions, 1.2 pmol . kg-1 . min-1 GLP-1 or placebo was infused intravenously in the morning (plasma glucose 13.7 +/- 0.9 mmol/l; plasma insulin 26 +/- 4 pmol/l). Glucose (glucose oxidase method), insulin, C-peptide, glucagon, GLP-1, cortisol, growth hormone (immunoassays), triglycerides, cholesterol, and nonesterified fatty acids (enzymatic tests) were measured.. Glucagon was reduced from approximately 8 to 4 pmol/l, and plasma glucose was lowered from 13.4 +/- 1.0 to 10.0 +/- 1.2 mmol/l with GLP-1 administration (plasma concentrations approximately 100 pmol, P < 0.0001), but not with placebo (14.2 +/- 0.7 to 13.2 +/- 1.0). Transiently, C-peptide was stimulated from basal 0.09 +/- 0.02 to 0.19 +/- 0.06 nmol/l by GLP-1 (P < 0.0001), but not by placebo (0.07 +/- 0.02 to 0.07 +/- 0.02). There was no significant effect on nonesterified fatty acids (P = 0.34), triglycerides (P = 0.57), cholesterol (P = 0.64), cortisol (P = 0.40), or growth hormone (P = 0.53).. Therefore, exogenous GLP-1 is able to lower fasting glycemia also in type I diabetic patients, mainly by reducing glucagon concentrations. However, this alone is not sufficient to normalize fasting plasma glucose concentrations, as was previously observed in type II diabetic patients, in whom insulin secretion (C-peptide response) was stimulated 20-fold. Topics: Adult; Analysis of Variance; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Fasting; Fatty Acids, Nonesterified; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Male; Peptide Fragments; Protein Precursors; Time Factors | 1996 |
19 other study(ies) available for oxyntomodulin and Diabetes-Mellitus--Type-1
Article | Year |
---|---|
Semaglutide in Early Type 1 Diabetes.
Topics: Diabetes Mellitus, Type 1; Glucagon-Like Peptides; Humans | 2023 |
Semaglutide Associated With Less Insulin Need in Early Type 1 Diabetes.
Topics: Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Glucagon-Like Peptides; Humans; Hypoglycemic Agents; Insulin; Insulin, Regular, Human | 2023 |
Glucagon like peptide-1 receptor agonists in type 1 diabetes.
Topics: Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Humans; Hypoglycemic Agents | 2023 |
Addition of glucagon-like peptide-1 receptor agonist therapy to insulin in C-peptide-positive patients with type 1 diabetes.
We aimed to test the hypothesis that addition of glucagon-like peptide-1 receptor agonists (GLP-1RAs) to insulin in C-peptide-positive patients with type 1 diabetes (T1D) will result in a reduction in glycated haemoglobin (HbA1c) with reduced insulin requirements and a rise in C-peptide concentrations. We conducted a retrospective analysis of 11 normal-weight patients with T1D consecutively treated with a GLP-1RA in addition to insulin. Paired t tests were used to compare the changes in HbA1c, insulin doses, body weight, body mass index, and C-peptide concentrations prior to and 12 ± 1 weeks after GLP-1RA therapy. At the end of 12 ± 1 weeks of GLP-1RA therapy, HbA1c fell from 10.74 ± 0.96% (95 ± 10.5 mmol/mol) to 7.4 ± 0.58% (58 ± 6.3mmol/mol) (P < 0.01), body weight fell from 71 ± 2.0 to 69 ± 2 kg (P = 0.06), and total insulin dose was reduced by 64% from 33 ± 6 to 11 ± 5 units (P < 0.01). Five out of 10 patients did not require any insulin. C-peptide concentrations increased significantly from 0.43 ± 0.09 ng/ml (0.14 ± 0.02 nmol/L) to 1.42 ± 0.42ng/ml (0.47 ± 0.13 nmol/L) (P = 0.01). Addition of GLP-1RA therapy to insulin in normal-weight patients with T1D led to a reduction in HbA1c with reduced insulin requirements, a 3.5-fold increase in C-peptide concentrations and freedom from insulin therapy in 50% of patients who tolerated the GLP-1RA therapy over a period of 12 ± 1 weeks. Topics: Adult; Autoantibodies; Body Weight; C-Peptide; Deprescriptions; Diabetes Mellitus, Type 1; Drug Therapy, Combination; Female; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Glutamate Decarboxylase; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Immunoglobulin Fc Fragments; Insulin; Liraglutide; Male; Middle Aged; Recombinant Fusion Proteins; Retrospective Studies; Treatment Outcome; Weight Loss | 2019 |
Comment on: "Dulaglutide treatment results in effective glycaemic control in latent autoimmune diabetes in adults (LADA): A post-hoc analysis of the AWARD-2, -4 and -5 trials".
Topics: Adult; Autoantibodies; Diabetes Mellitus, Type 1; Glucagon-Like Peptides; Humans; Immunoglobulin Fc Fragments; Latent Autoimmune Diabetes in Adults; Recombinant Fusion Proteins | 2018 |
Response to the comment on: "Dulaglutide treatment results in effective glycaemic control in latent autoimmune diabetes in adults (LADA): A post-hoc analysis of the AWARD-2, -4 and -5 trials".
Topics: Adult; Autoantibodies; Diabetes Mellitus, Type 1; Glucagon-Like Peptides; Humans; Immunoglobulin Fc Fragments; Latent Autoimmune Diabetes in Adults; Recombinant Fusion Proteins | 2018 |
[The physiology of incretins].
The discovery of incretins-glucagon-like peptide (GLP)-1 and glucose-dependent insulinotrop peptide (GIP)-, clarification of their physiological properties as well as therapeutic application of incretin-based blood glucose lowering drugs opened new perspectives in the medical management of type 2 diabetes. New results of basic research investigations led to revaluation of the role of GIP in metabolic processes and a more established use of GLP-1 action. The article overviews the most relevant data of production and effects of incretins, as well as future possibilities of their therapeutic use. Topics: Animals; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Gastric Inhibitory Polypeptide; Glucagon-Like Peptides; Humans; Hypoglycemic Agents; Incretins | 2011 |
Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes.
Hyperglucagonemia following oral glucose ingestion in patients with type 1 diabetes (and type 2 diabetes) has been claimed to result from impaired intraislet insulin inhibition of glucagon. We looked at plasma glucagon responses to the oral glucose tolerance test (OGTT) and isoglycemic intravenous glucose infusion (IIGI) in patients with type 1 diabetes. Nine patients without residual beta-cell function [age: 25 +/- 9 yr; body mass index (BMI): 24 +/- 2 kg/m(2); fasting plasma glucose (FPG): 9.5 +/- 2.1 mM; Hb A(1c): 8.4 +/- 1.2% (mean +/- SD)] and eight healthy subjects (age: 28 +/- 5 yr; BMI: 24 +/- 3 kg/m(2); FPG: 5.3 +/- 0.2 mM; Hb A(1c): 5.0 +/- 0.1%) were examined on two separate occasions: 4-h 50-g OGTT and IIGI. Isoglycemia during IIGIs was obtained using 53 +/- 5 g of glucose in patients with type 1 diabetes and 30 +/- 3 g in control subjects (P < 0.001), resulting in gastrointestinal-mediated glucose disposal [100% x (glucose(OGTT) - glucose(IIGI)/glucose(OGTT))] of -6 +/- 9 and 40 +/- 6% (P < 0.01), respectively. Equal glucagon suppression during the two glucose stimuli was observed in healthy subjects, whereas patients with type 1 diabetes exhibited less inhibition in response to OGTT compared with IIGI (AUC: 1,519 +/- 129 vs. 1,240 +/- 86 pM.4 h; P = 0.03). This difference was even more pronounced during the initial 40 min with paradoxical hypersecretion of glucagon during OGTT and suppression during IIGI (AUC: 37 +/- 13 vs. -33 +/- 16 pM.40 min; P = 0.02). These results suggest that the inappropriate glucagon response to glucose in patients with type 1 diabetes occurs as a consequence of the oral administration way, suggesting a role of the gastrointestinal tract, possibly via glucagonotropic signaling from gut hormones (e.g., glucose-dependent insulinotropic polypeptide), in type 1 diabetic hyperglucagonemia. Topics: Adult; Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptides; Glucose; Glucose Tolerance Test; Humans; Infusions, Intravenous; Male; Young Adult | 2010 |
Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones secreted in response to meal ingestion, thereby enhancing postprandial insulin secretion. Therefore, an attenuated incretin response could contribute to the impaired insulin responses in patients with diabetes mellitus. The aim of the present investigation was to investigate incretin secretion, in obesity and type 1 and type 2 diabetes mellitus, and its dependence on the magnitude of the meal stimulus. Plasma concentrations of incretin hormones (total, reflecting secretion and intact, reflecting potential action) were measured during two meal tests (260 kcal and 520 kcal) in eight type 1 diabetic patients, eight lean healthy subjects, eight obese type 2 diabetic patients, and eight obese healthy subjects. Both in diabetic patients and in healthy subjects, significant increases in GLP-1 and GIP concentrations were seen after ingestion of both meals. The incretin responses were significantly higher in all groups after the large meal, compared with the small meal, with correspondingly higher C-peptide responses. Both type 1 and type 2 diabetic patients had normal GIP responses, compared with healthy subjects, whereas decreased GLP-1 responses were seen in type 2 diabetic patients, compared with matched obese healthy subjects. Incremental GLP-1 responses were normal in type 1 diabetic patients. Increased fasting concentrations of GIP and an early enhanced postprandial GIP response were seen in obese, compared with lean healthy subjects, whereas GLP-1 responses were the same in the two groups. beta-cell sensitivity to glucose, evaluated as the slope of insulin secretion rates vs. plasma glucose concentration, tended to increase in both type 2 diabetic patients (29%, P = 0.19) and obese healthy subjects (22% P = 0.04) during the large meal, compared with the small meal, perhaps reflecting the increased incretin response. We conclude: 1) that a decreased GLP-1 secretion may contribute to impaired insulin secretion in type 2 diabetes mellitus, whereas GIP and GLP-1 secretion is normal in type 1 diabetic patients; and 2) that it is possible to modulate the beta-cell sensitivity to glucose in obese healthy subjects, and possibly also in type 2 diabetic patients, by giving them a large meal, compared with a small meal. Topics: Adult; Aged; Blood Glucose; Body Weight; C-Peptide; Case-Control Studies; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Feeding Behavior; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Male; Middle Aged; Obesity; Peptide Fragments; Protein Precursors; Random Allocation | 2003 |
Effect of glucagon-like peptide-1(7-36)-amide on initial splanchnic glucose uptake and insulin action in humans with type 1 diabetes.
In vitro studies indicate that glucagon-like peptide-1(7-36)-amide (GLP-1) can enhance hepatic glucose uptake. To determine whether GLP-1 increases splanchnic glucose uptake in humans, we studied seven subjects with type 1 diabetes on two occasions. On both occasions, glucose was maintained at approximately 5.5 mmo/l during the night using a variable insulin infusion. On the morning of the study, a somatostatin, glucagon, and growth hormone infusion was started to maintain basal hormone levels. Glucose (containing [3H]glucose) was infused via an intraduodenal tube at a rate of 20 micromol.kg(-1).min(-1). Insulin concentrations were increased to approximately 500 pmol/l while glucose was clamped at approximately 8.8 mmol/l for the next 4 h by means of a variable intravenous glucose infusion labeled with [6,6-2H2]glucose. Surprisingly, the systemic appearance of intraduodenally infused glucose was higher (P = 0.01) during GLP-1 infusion than saline infusion, indicating a lower (P < 0.05) rate of initial splanchnic glucose uptake (1.4 +/- 1.5 vs. 4.8 +/- 0.8 micromol.kg(-1).min(-1)). On the other hand, flux through the hepatic uridine-diphosphate- glucose pool did not differ between study days (14.2 +/- 5.5 vs. 13.0 +/- 4.2 micromol.kg(-1).min(-1)), implying equivalent rates of glycogen synthesis. GLP-1 also impaired (P < 0.05) insulin-induced suppression of endogenous glucose production (6.9 +/- 2.9 vs. 1.3 +/- 1.4 micromol.kg(-1).min(-1)), but caused a time-dependent increase (P < 0.01) in glucose disappearance (93.7 +/- 10.0 vs. 69.3 +/- 6.3 micromol.kg(-1).min(-1); P < 0.01) that was evident only during the final hour of study. We conclude that in the presence of hyperglycemia, hyperinsulinemia, and enterally delivered glucose, GLP-1 increases total body but not splanchnic glucose uptake in humans with type 1 diabetes. Topics: Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Duodenum; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Human Growth Hormone; Hydrocortisone; Hypoglycemic Agents; Insulin; Intubation; Osmolar Concentration; Peptide Fragments; Viscera | 2001 |
Does diabetic state affect co-localization of peptide YY and enteroglucagon in colonic endocrine cells?
Changes in the numbers of PYY- and enteroglucagon-immunoreactive cells in colon of animal models of human diabetes have been reported. As these peptides co-localize in the same cells it is possible that the observed changes are a result of changes in co-localization.. Animal models of human type 1 and type 2 diabetes, namely the non-obese diabetic (NOD) mouse and the obese (ob/ob) mouse, were studied. As controls for the NOD mice, BALB/cJ mice were used and for ob/ob mice, homozygous lean (+/+) mice were used. Tissue samples from colon were double-immunostained for PYY and enteroglucagon according to the indirect immunofluorescence method.. Co-localization of enteroglucagon and PYY was found in colonic endocrine cells in all groups investigated. Compared with controls, pre-diabetic NOD mice showed a decreased proportion of enteroglucagon/PYY co-localization. There was no difference in diabetic NOD mice or diabetic ob/ob mice when compared with controls.. Whereas the number of cells containing solely enteroglucagon and solely PYY increases in pre-diabetic NOD mice, production of enteroglucagon in PYY-immunoreactive cells decreases. Although the numbers of PYY and enteroglucagon cells have been reported to be changed in both diabetic NOD mice and in obese mice, the balance between co-expressing and mono-expressing cells seems to be preserved. Topics: Animals; Colon; Diabetes Mellitus, Type 1; Enteroendocrine Cells; Female; Glucagon-Like Peptides; Homozygote; Humans; Immunohistochemistry; Male; Mice; Mice, Inbred BALB C; Mice, Inbred NOD; Mice, Obese; Peptide YY; Prediabetic State; Reference Values | 2000 |
Incretin hormone expression in the gut of diabetic mice and rats.
To elucidate the question of whether production of the insulinotropic gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) is altered by a diabetic metabolic state, their intestinal expression pattern was evaluated. Two rodent models for diabetes mellitus were used, non-obese diabetic (NOD) mice as a model for insulin-dependent diabetes and Zucker diabetic fatty (ZDF) rats for non-insulin-dependent diabetes mellitus (NIDDM). Expression of both incretin hormones followed typical patterns, which were similar in both animals and unaltered by the diabetic state. The GIP gene was greatly expressed in the duodenum, jejunum, and ileum, with a continuous decrease from the upper to lower intestines. This pattern was observed in both NOD mice and ZDF rats regardless of the diabetic state. This expression data was corroborated by radioimmunoassay (RIA) analysis of the gene product GIP. Expression of the proglucagon gene encoding GLP-1 had an opposite appearance. The highest expression was seen in the large bowel and the ileum. RIA analysis of the gene product GLP-1 mirrored these data. Although the distribution pattern was similar in both animal models, in contrast to diabetic NOD mice, a regulated expression was found in diabetic ZDF rats. Compared with lean nondiabetic controls, fatty hyperglycemic animals showed an increased expression of the proglucagon gene in the colon and a concomitant reduction in the small intestine. This was mirrored by the GLP-1 content of the colon and ileum. Overall, basal GLP-1 plasma levels were increased in ZDF rats (17.0 +/- 2.8 pmol) compared with lean Zucker rats (12.4 +/- 1.8 pmol). In conclusion, incretin hormone expression (GIP and GLP-1) follows specific patterns throughout the gut and is unaltered by the diabetic state. In ZDF rats, regulation of proglucagon expression occurs mainly in the large intestine. Topics: Animals; Blotting, Northern; Colon; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Gastric Inhibitory Polypeptide; Gene Expression; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Intestinal Mucosa; Intestine, Small; Intestines; Mice; Mice, Inbred NOD; Peptide Fragments; Proglucagon; Protein Precursors; Rats; Rats, Zucker; Rectum; RNA, Messenger; Tissue Distribution | 1997 |
Preserved GLP-I effects on glycogen synthase a activity and glucose metabolism in isolated hepatocytes and skeletal muscle from diabetic rats.
To search if biological effects of GLP-I on glucose metabolism in extrapancreatic tissue are present in diabetic states, we have studied the action of GLP-I and insulin on glycogen-enzyme activity, glycogen synthesis, and glucose metabolism in isolated hepatocytes and soleus muscle from adult streptozotocin (STZ)- and neonatal STZ-treated diabetic rats. This work confirms the previously reported insulin-like effects of GLP-I on glucose metabolism in both muscle and liver tissue from normal rats (control). The present study extends those observations to the muscle and liver tissue of diabetic animals. In both muscle and liver tissue, the metabolism of D-glucose, in the absence of added peptides, was more severely affected in adult STZ (IDDM model) than in neonatal STZ (nSTZ; NIDDM model) rats, and the magnitude of hormonal effect on metabolic variables was lower in diabetic rats than in control rats, as a rule. Nevertheless, in liver and muscle tissue of diabetic rats, GLP-I was able to increase glycogen synthase activity, augment the net rate of D-[U-14C]glucose incorporation into glycogen, and increase D-[5-3H]glucose utilization, D-[U-14C]glucose oxidation, and lactate production. In conclusion, GLP-I exerts insulin-like effects on D-glucose metabolism in both muscle and liver tissue in IDDM or NIDDM animal models, and present observations reinforce the view that GLP-I may represent a most promising tool in the treatment of diabetic patients. Topics: Animals; Animals, Newborn; Carbon Radioisotopes; Cells, Cultured; Cohort Studies; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon-Like Peptides; Glucose; Glycogen Synthase; Insulin; Liver; Muscle, Skeletal; Pancreatic Hormones; Peptides; Phosphorylases; Rats; Rats, Wistar | 1997 |
Hormonal enteroinsular axis in newborn infants of insulin-treated diabetic mothers.
To study whether the increased glucose levels in the amniotic fluid during diabetic pregnancies induce an early maturation of the hormonal enteroinsular axis, we measured blood glucose levels and plasma concentrations of C-peptide, pancreatic glucagon, enteroglucagon, and gastric inhibitory polypeptide (GIP) in cord blood from 18 newborn infants of insulin-treated diabetic mothers (IDM) and 18 infants of nondiabetic mothers. In addition, we studied the same parameters in 20 IDM and 12 control infants before and after their first feed comprising human milk (5 mL/kg), given by nasogastric tube at the age of 2 h. The IDM had significantly higher blood glucose levels and plasma C-peptide concentrations in their cord blood than the control infants, which was followed postnatally by a substantial fall in these levels, whereas a more modest decrease could be seen in the control infants. Circulating enteroglucagon and GIP concentrations at the age of 2 h were significantly higher than those observed in cord blood in both the IDM and the control infants, but the IDM had significantly lower blood glucose levels, higher plasma C-peptide, and lower enteroglucagon concentrations before the first feed. There was a significant increase in blood glucose levels after the feed in both the IDM and the control infants, and the concentrations 2 h after feeding were of the same magnitude in the two groups. No significant C-peptide response could be observed in either group, but the IDM continuously had higher C-peptide concentrations. A significant enteroglucagon and GIP response could be seen in the IDM, whereas the controls exhibited only a GIP response. However, no significant differences were found between the two groups in the absolute postprandial plasma concentrations of these hormones. Our results show rapid, substantial postnatal changes in circulating concentrations of enteroinsular hormones in both IDM and control infants. Enteral feeding with human milk corrects early postnatal hypoglycemia within 2 h in most IDM without causing any exacerbation of their hyperinsulinemia. The absence of any C-peptide response to the first feed and of any observed differences between IDM and normal infants in absolute concentrations of enteroglucagon and GIP after the first feed suggests that the enteroinsular axis matures postnatally in both groups of infants. Topics: Blood Glucose; C-Peptide; Diabetes Mellitus, Type 1; Digestive System; Enteral Nutrition; Female; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptides; Humans; Infant, Newborn; Insulin; Islets of Langerhans; Male; Milk, Human; Pancreas; Pregnancy; Pregnancy in Diabetics | 1993 |
Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus.
Glucagon-like peptide-1 (7-36) amide (glucagon-like insulinotropic peptide, or GLIP) is a gastrointestinal peptide that potentiates the release of insulin in physiologic concentrations. Its effects in patients with diabetes mellitus are not known.. We compared the effect of an infusion of GLIP that raised plasma concentrations of GLIP twofold with the effect of an infusion of saline, on the meal-related release of insulin, glucagon, and somatostatin in eight normal subjects, nine obese patients with non-insulin-dependent diabetes mellitus (NIDDM), and eight patients with insulin-dependent diabetes mellitus (IDDM). The blood glucose concentrations in the patients with diabetes were controlled by a closed-loop insulin-infusion system (artificial pancreas) during the infusion of each agent, allowing measurement of the meal-related requirement for exogenous insulin. In the patients with IDDM, normoglycemic-clamp studies were performed during the infusions of GLIP and saline to determine the effect of GLIP on insulin sensitivity.. In the normal subjects, the infusion of GLIP significantly lowered the meal-related increases in the blood glucose concentration (P less than 0.01) and the plasma concentrations of insulin and glucagon (P less than 0.05 for both comparisons). The insulinogenic index (the ratio of insulin to glucose) increased almost 10-fold, indicating that GLIP had an insulinotropic effect. In the patients with NIDDM, the infusion of GLIP reduced the mean (+/- SE) calculated isoglycemic meal-related requirement for insulin from 17.4 +/- 2.8 to 2.0 +/- 0.5 U (P less than 0.001), so that the integrated area under the curve for plasma free insulin was decreased (P less than 0.05) in spite of the stimulation of insulin release. In the patients with IDDM, the GLIP infusion decreased the calculated isoglycemic meal-related insulin requirement from 9.4 +/- 1.5 to 4.7 +/- 1.4 U. The peptide decreased glucagon and somatostatin release in both groups of patients. In the normoglycemic-clamp studies in the patients with IDDM, the GLIP infusion significantly increased glucose utilization (saline vs. GLIP, 7.2 +/- 0.5 vs. 8.6 +/- 0.4 mg per kilogram of body weight per minute; P less than 0.01).. GLIP has an antidiabetogenic effect, and it may therefore be useful in the treatment of patients with NIDDM: Topics: Adult; Aged; Blood Glucose; C-Peptide; Diabetes Mellitus; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Eating; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Infusion Systems; Insulin Secretion; Male; Middle Aged; Obesity; Peptide Fragments; Peptides; Somatostatin | 1992 |
Advances in diabetes research.
Topics: Antidepressive Agents; Demyelinating Diseases; Diabetes Mellitus, Type 1; Diabetic Neuropathies; Gastrointestinal Hormones; Glucagon; Glucagon-Like Peptides; Humans; Nerve Degeneration; Neuralgia; Peptides; Research | 1992 |
The enteroinsular axis revisited. A novel role for an incretin.
Topics: Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Insulin; Insulin Secretion; Peptide Fragments; Peptides | 1992 |
Regulation of peripheral plasma somatostatin like immunoreactivity in type I diabetes: role of the degree of metabolic control.
We have determined peripheral venous somatostatin like immunoreactivity (SLI) levels in 11 normal subjects (blood glucose--BG--: 4.4 +/- 0.1 mM; ketone bodies--KB--: 90 +/- 12 microM; plasma free fatty acids--FFA --: 340 +/- 42 microM), 4 Biostator controlled insulin dependent diabetics (BG: 5.4 +/- 0.2 mM; FFA: 418 +/- 38 microM; KB: 226 +/- 41 microM) and 7 poorly controlled ketotic diabetics (BG: 10.8 +/- 1.3 mM; FFA: 915 +/- 19 microM; KB: 2490 +/- 576 microM). SLI was determined again after 48 to 96 hours of intravenous insulin infusion for the 7 ketotic diabetics and after transient interruption of insulin infusion for the Biostator controlled diabetics. Relative to normal subjects ketotic diabetics had elevated SLI levels (29.7 +/- 5.9 vs 13.5 +/- 1.8 ng/L, p less than 0.01) whereas biostator-controlled patient had near to normal values (20.4 +/- 6.4 ng/L, p greater than 0.30). Transient arrest of insulin infusion in the Biostator controlled diabetics resulted only in a mild metabolic deterioration (BG: 12.8 +/- 2.1 mM; FFA: 640 +/- 146 microM; KB: 950 +/- 163 microM) without a significant rise of SLI. Intravenous insulin infusion in the initially ketotic patients decreased BG and KB in each subject (p less than 0.01) but decreased FFA (1097 +/- 170 to 453 +/- 74 microM, p less than 0.05) and SLI (34.0 +/- 12.0 to 9.8 +/- 2.4 ng/L, p less than 0.05) only in 4 patients whereas both FFA (737 +/- 107 to 725 +/- 25 microM) and SLI (27.6 +/- 4.7 to 20.3 +/- 4.7 ng/L) levels remained stable in the other 3. These results suggest that SLI levels in type I diabetics are dependent the degree of metabolic control and could be related to the variations of FFA concentrations. Topics: Adolescent; Adult; Aged; Blood Glucose; Diabetes Mellitus, Type 1; Drug Administration Schedule; Fatty Acids, Nonesterified; Female; Glucagon-Like Peptides; Humans; Insulin; Insulin, Regular, Pork; Ketone Bodies; Male; Middle Aged; Peptides | 1986 |
Plasma glucagon and glucagon-like immunoreactive components in Type 1 (insulin-dependent) diabetic patients and normal subjects before and after an oral glucose load.
Biogel P-30 filtration of plasma from Type 1 (insulin-dependent) diabetic patients and normal subjects in basal state and after an oral glucose load was assayed with a C-terminal (30 K) and a glucagon-like immunoreactivity-cross-reacting antiserum (R8). Up to four immunoreactive peaks of approximate molecular sizes of greater than 20,000 (fraction I), 9000 (fraction II), 3500 (fraction III) and 2000 (fraction IV) were detected with the two antisera in both groups. In the basal state, the only significant difference observed between both groups was a higher R8-reactivity in fraction II in the group of diabetic patients, although the R8 minus 30 K values for this fraction did not show a significant difference between both groups. After glucose the only significant differences were an increase of R8-reactivity in fraction II in both groups (p less than 0.01) and a decrease of 30 K-reactivity in fraction III (IRG3500) in normal subjects (p less than 0.05). In seven out of 12 diabetic patients, 30 K-reactivity in fraction II (IRG9000) and III (IRG3500) increased above their basal values. The gut-glucagon-like immunoreactivity response to oral glucose (delta R8-delta 30 K values in fraction II) was similar in both the diabetic and normal subjects. These results indicate that the paradoxical rise in plasma immunoreactive glucagon after oral glucose in diabetic patients may be due to an increase of both IRG3500 and/or IRG9000, the gut-glucagon-like immunoreactivity released during glucose absorption has a molecular weight of approximately 9000, and no differences in plasma gut-glucagon-like immunoreactivity were observed in Type 1 diabetic patients when compared with normal subjects, either in the basal state or after glucose ingestion. Topics: Adult; Amino Acid Sequence; Chromatography, Gel; Diabetes Mellitus, Type 1; Female; Glucagon; Glucagon-Like Peptides; Glucose Tolerance Test; Humans; Male; Peptides | 1985 |