oxyntomodulin and Cardiomyopathy--Dilated

oxyntomodulin has been researched along with Cardiomyopathy--Dilated* in 1 studies

Other Studies

1 other study(ies) available for oxyntomodulin and Cardiomyopathy--Dilated

ArticleYear
Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy.
    American journal of physiology. Heart and circulatory physiology, 2005, Volume: 289, Issue:6

    We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7-36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7-36) is rapidly degraded in the plasma to GLP-1-(9-36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7-36) (1.5 pmol.kg(-1).min(-1)) to GLP-1-(9-36) (1.5 pmol.kg(-1).min(-1)) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. As a result, dogs with DCM demonstrated myocardial insulin resistance under basal and insulin-stimulated conditions. Both GLP-1-(7-36) and GLP-1-(9-36) significantly reduced (P < 0.01) LV end-diastolic pressure [GLP-1-(7-36), 28 +/- 1 to 15 +/- 2 mmHg; GLP-1-(9-36), 29 +/- 2 to 16 +/- 1 mmHg] and significantly increased (P < 0.01) the first derivative of LV pressure [GLP-1-(7-36), 1,315 +/- 81 to 2,195 +/- 102 mmHg/s; GLP-1-(9-36), 1,336 +/- 77 to 2,208 +/- 68 mmHg] and cardiac output [GLP-1-(7-36), 1.5 +/- 0.1 to 1.9 +/- 0.1 l/min; GLP-1-(9-36), 2.0 +/- 0.1 to 2.4 +/- 0.05 l/min], whereas an equivolume infusion of saline had no effect. Both peptides increased myocardial glucose uptake but without a significant increase in plasma insulin. During the GLP-1-(9-36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9-36) mimics the effects of GLP-1-(7-36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9-36) amide is an active peptide.

    Topics: Animals; Blood Pressure; Cardiomyopathy, Dilated; Consciousness; Coronary Circulation; Dogs; Dose-Response Relationship, Drug; Female; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Glucose; Heart; Heart Ventricles; Male; Myocardium; Peptide Fragments; Peptides; Stroke Volume; Treatment Outcome; Ventricular Dysfunction, Left

2005