oxymorphone has been researched along with Neuralgia* in 2 studies
2 other study(ies) available for oxymorphone and Neuralgia
Article | Year |
---|---|
Local peripheral antinociceptive effects of 14-O-methyloxymorphone derivatives in inflammatory and neuropathic pain in the rat.
Antinociception achieved after peripheral administration of opioids has opened a new approach to the treatment of severe and chronic pain. Additionally, opioid analgesics with restricted access to the central nervous system could improve safety of opioid drugs used in clinical practice. In the present study, peripheral components of antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone were investigated after local intraplantar (i.pl.) administration in rat models of inflammatory and neuropathic pain. Their antinociceptive activities were compared with those of morphine, the classical mu-opioid receptor agonist. Intraplantar administration of morphine and the 6-amino acid derivatives produced dose-dependent reduction of formalin-induced flinching of the inflamed paw, without significant effect on the paw edema. Local i.pl. administration of the new derivatives in rats with neuropathic pain induced by sciatic nerve ligation produced antiallodynic and antihyperalgesic effects; however, the antinociceptive activity was lower than that observed in inflammatory pain. In both models, the 6-amino acid derivatives and morphine at doses that produced analgesia after i.pl. administration were systemically (s.c.) much less active indicating that the antinociceptive action is due to a local effect. Moreover, the local opioid antinociceptive effects were significantly attenuated by naloxone methiodide, a peripherally acting opioid receptor antagonist, demonstrating that the effect was mediated by peripheral opioid receptors. The present data indicate that the peripherally restricted 6-amino acid conjugates of 14-O-methyloxymorphone elicit antinociception after local administration, being more potent in inflammatory than in neuropathic pain. Opioid drugs with peripheral site of action can be an important target for the treatment of long lasting pain. Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Hyperalgesia; Inflammation; Male; Morphine; Naloxone; Neuralgia; Oxymorphone; Pain; Rats; Rats, Wistar; Structure-Activity Relationship | 2007 |
A single dose of liposome-encapsulated oxymorphone or morphine provides long-term analgesia in an animal model of neuropathic pain.
An extended-release formulation of oxymorphone was produced by encapsulation into liposomes, using a novel technique. Liposome-encapsulated morphine was produced, using a standard technique These preparations were tested in an animal model of neuropathic pain. Male Sprague-Dawley rats (approx. 300 g) were allotted to control (non-loaded liposomes) and treatment (liposome-encapsulated oxymorphone or morphine) groups. Drugs were administered subcutaneously to all rats immediately prior to sciatic nerve ligation. Thermal withdrawal latencies were measured at baseline and daily for seven days after sciatic nerve ligation. A second experiment involved subcutaneous administration of non-loaded liposomes, morphine, or oxymorphone to rats that did not undergo sciatic nerve ligation. Thermal withdrawal latencies in sciatic nerve-ligated rats given non-loaded liposomes decreased significantly by day four, with maximal decrease at day seven after surgery, indicating development of full hyperalgesia. In contrast, ligated rats given liposome-encapsulated morphine or liposome-encapsulated oxymorphone had no decrease in thermal withdrawal latency by day four, indicating that these long-acting preparations prevented development of hyperalgesia after a single injection. This treatment effect persisted to day seven. Non-ligated rats treated with vehicle or liposome-encapsulated morphine had no change in thermal withdrawal latencies. Non-ligated rats treated with liposome-encapsulated oxymorphone had a small, but significant increase in thermal withdrawal latency from day four through day seven. One subcutaneous injection of liposome-encapsulated oxymorphone or morphine was effective in preventing hyperalgesia in this pain model for up to seven days. These results suggest that liposome-encapsulation of oxymorphone offers a novel, convenient, and effective means to provide long-term analgesia. Topics: Analgesics, Opioid; Animal Welfare; Animals; Delayed-Action Preparations; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Carriers; Hyperalgesia; Injections, Subcutaneous; Liposomes; Male; Morphine; Neuralgia; Oxymorphone; Pain Measurement; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Sciatic Neuropathy | 2003 |