oxymorphone and Arrhythmias--Cardiac

oxymorphone has been researched along with Arrhythmias--Cardiac* in 1 studies

Other Studies

1 other study(ies) available for oxymorphone and Arrhythmias--Cardiac

ArticleYear
Activation of kappa-opioid receptor as a method for prevention of ischemic and reperfusion arrhythmias: role of protein kinase C and K(ATP) channels.
    Bulletin of experimental biology and medicine, 2007, Volume: 143, Issue:2

    Intravenous pretreatment with kappa-opioid receptor antagonist (-)-U-50,488 (1 mg/kg) improved heart resistance to the arrhythmogenic effect of coronary occlusion and reperfusion. Selective kappa1-opioid receptor antagonist norbinaltorphimine and nonselective blocker of peripheral opioid receptors methylnaloxone abolished this antiarrhythmic effect. Preliminary blockade of protein kinase C with chelerythrine or inhibition of ATP-dependent K+ channels (K(ATP) channels) with glybenclamide abolished the antiarrhythmic effect of kappa-opioid receptor activation. Selective inhibitor of sarcolemmal K(ATP) channels did not modulate the kappa-opioid receptor-mediated increase in cardiac electrical stability. Our results suggest that protein kinase C and mitochondrial K(ATP) channels play an important role in the antiarrhythmic effect associated with activation of peripheral kappa-opioid receptors.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alkaloids; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Benzophenanthridines; Glyburide; Male; Myocardial Reperfusion Injury; Naltrexone; Oxymorphone; Potassium Channels; Protein Kinase C; Rats; Rats, Wistar; Receptors, Opioid, kappa

2007
chemdatabank.com