Page last updated: 2024-11-02

oxidopamine and Anterior Horn Cell Disease

oxidopamine has been researched along with Anterior Horn Cell Disease in 1 studies

Oxidopamine: A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals.
oxidopamine : A benzenetriol that is phenethylamine in which the hydrogens at positions 2, 4, and 5 on the phenyl ring are replaced by hydroxy groups. It occurs naturally in human urine, but is also produced as a metabolite of the drug DOPA (used for the treatment of Parkinson's disease).

Research Excerpts

ExcerptRelevanceReference
" VU0364770 showed efficacy alone or when administered in combination with L-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant)."1.38The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease. ( Amalric, M; Blobaum, AL; Bode, J; Bridges, TM; Bubser, M; Conn, PJ; Daniels, JS; Dickerson, JW; Engers, DW; Hopkins, CR; Italiano, K; Jadhav, S; Jones, CK; Lindsley, CW; Morrison, RD; Niswender, CM; Thompson, AD; Turle-Lorenzo, N, 2012)

Research

Studies (1)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's1 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Jones, CK1
Bubser, M1
Thompson, AD1
Dickerson, JW1
Turle-Lorenzo, N1
Amalric, M1
Blobaum, AL1
Bridges, TM1
Morrison, RD1
Jadhav, S1
Engers, DW1
Italiano, K1
Bode, J1
Daniels, JS1
Lindsley, CW1
Hopkins, CR1
Conn, PJ1
Niswender, CM1

Other Studies

1 other study available for oxidopamine and Anterior Horn Cell Disease

ArticleYear
The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease.
    The Journal of pharmacology and experimental therapeutics, 2012, Volume: 340, Issue:2

    Topics: 3,4-Dihydroxyphenylacetic Acid; Adenosine A2 Receptor Antagonists; Animals; Brain; Calcium Signaling

2012