oxi-4503 and Disease-Models--Animal

oxi-4503 has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for oxi-4503 and Disease-Models--Animal

ArticleYear
Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours.
    Nature biomedical engineering, 2018, Volume: 2, Issue:10

    Understanding the uptake of a drug by diseased tissue, and the drug's subsequent spatiotemporal distribution, are central factors in the development of effective targeted therapies. However, the interaction between the pathophysiology of diseased tissue and individual therapeutic agents can be complex, and can vary across tissue types and across subjects. Here, we show that the combination of mathematical modelling, high-resolution optical imaging of intact and optically cleared tumour tissue from animal models, and in vivo imaging of vascular perfusion predicts the heterogeneous uptake, by large tissue samples, of specific therapeutic agents, as well as their spatiotemporal distribution. In particular, by using murine models of colorectal cancer and glioma, we report and validate predictions of steady-state blood flow and intravascular and interstitial fluid pressure in tumours, of the spatially heterogeneous uptake of chelated gadolinium by tumours, and of the effect of a vascular disrupting agent on tumour vasculature.

    Topics: Animals; Antineoplastic Agents; Blood Vessels; Cell Line, Tumor; Colorectal Neoplasms; Contrast Media; Diphosphates; Disease Models, Animal; Female; Gadolinium; Glioma; Humans; Hydrodynamics; Image Processing, Computer-Assisted; Mice; Mice, Inbred C57BL; Mice, Nude; Models, Theoretical; Regional Blood Flow; Stilbenes; Transplantation, Heterologous

2018
Preclinical evaluation of vascular-disrupting agents in Ewing's sarcoma family of tumours.
    European journal of cancer (Oxford, England : 1990), 2009, Volume: 45, Issue:4

    The effects of the tubulin-binding vascular-disrupting agents (VDAs), combretastatin A4 phosphate (CA4P), OXi4503/CA1P and OXi8007, in subcutaneous mouse models of the Ewing's sarcoma family of tumours (ESFTs) have been investigated alone and in combination with doxorubicin. Delay in subcutaneous tumour growth was observed following treatment of mice with multiple doses of OXi4503/CA1P but not with CA4P or OXi8007. A single dose of OXi4503/CA1P caused complete shutdown of vasculature by 24h and extensive haemorrhagic necrosis by 48h. However, a viable rim of proliferating cells remained, which repopulated the tumour within 10 days following the withdrawal of treatment. Combined treatment with doxorubicin 1h prior to administration of OXi4503/CA1P enhanced the effects of OXi4503/CA1P causing a synergistic delay in tumour growth (p<0.001). This study demonstrates that OXi4503/CA1P is a potent VDA in ESFT and in combination with conventional cytotoxic agents represents a promising treatment strategy for this tumour group.

    Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Bibenzyls; Bone Neoplasms; Cell Proliferation; Diphosphates; Disease Models, Animal; Doxorubicin; Drug Evaluation, Preclinical; Mice; Mice, Nude; Necrosis; Neoplasm Transplantation; Neovascularization, Pathologic; Sarcoma, Ewing; Stilbenes

2009
Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2006, Jul-01, Volume: 12, Issue:13

    As first-generation small-molecule vascular disrupting agents (VDA) have begun to enter clinical trials, second-generation agents are under active development. One such agent is the combretastatin A4 disodium phosphate (CA4P) analogue OXi4503 (CA1P).. C3H/HeJ mice bearing KHT sarcomas were treated with CA4P and OXi4503 and the effect on tumor vasculature was determined by evaluating the extent of vascular shutdown (Hoechst-33342 vessel staining) and tumor perfusion inhibition (dynamic contrast-enhanced magnetic resonance imaging). Dynamic contrast-enhanced magnetic resonance imaging and tumor necrosis end points also were used to examine the pathophysiologic tumor effects following repeated exposures to these agents.. Single doses of either agent (CA4P, 100 mg/kg; OXi4503, 25 mg/kg) resulted in an 80% to 90% reduction in tumor perfusion 4 hours after treatment. Whereas recovery in tumor perfusion was observed 48 hours posttreatment, this recovery was significantly slower in mice treated with OXi4503. Tumors re-treated with either VDA 72 hours after the first drug exposure showed a similar reduction and recovery in tumor perfusion. Histologic evidence showed the presence of a smaller viable rim after exposure to OXi4503 than that observed after CA4P treatment. Furthermore, the extent of recovery of tumor necrosis 72 hours after drug treatment was less for OXi4053.. The present studies show that the second-generation VDA OXi4503 possesses significant antivascular effects in solid tumors. Importantly, the vasculature of tumors of mice that had received an initial dose this agent was as responsive to a subsequent treatment.

    Topics: Animals; Cell Survival; Diphosphates; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Female; Injections, Intraperitoneal; Magnetic Resonance Imaging; Mice; Mice, Inbred C3H; Neovascularization, Pathologic; Radiography; Sarcoma, Experimental; Stilbenes; Time Factors; Transplantation, Heterologous; Xenograft Model Antitumor Assays

2006