oxepins has been researched along with Muscular-Dystrophy--Animal* in 2 studies
2 other study(ies) available for oxepins and Muscular-Dystrophy--Animal
Article | Year |
---|---|
Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J) mouse model of congenital muscular dystrophy.
Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients.. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected.. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis.. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients. Topics: Administration, Oral; Animals; Fibrosis; Forelimb; Hindlimb; Humans; Laminin; Mice; Mice, Knockout; Muscle Strength; Muscle, Skeletal; Muscular Dystrophies; Muscular Dystrophy, Animal; Oxepins; Respiratory Rate | 2013 |
Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-alpha2 deficiency.
Laminin alpha2-deficient congenital muscular dystrophy, called MDC1A, is a rare, devastating genetic disease characterized by severe neonatal hypotonia ("floppy infant syndrome"), peripheral neuropathy, inability to stand or walk, respiratory distress, and premature death in early life. Transgenic overexpression of the apoptosis inhibitor protein BCL-2, or deletion of the proapoptotic Bax gene in a mouse model for MDC1A prolongs survival and mitigates pathology, indicating that apoptotic events are involved in the pathology. Here we demonstrate that the proapoptotic glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-Siah1-CBP/p300-p53 pathway is activated in a mouse model for MDC1A. Moreover, we show that omigapil, which inhibits GAPDH-Siah1-mediated apoptosis, ameliorates several pathological hallmarks in the MDC1A mouse model. Specifically, we demonstrate that treatment with omigapil inhibits apoptosis in muscle, reduces body weight loss and skeletal deformation, increases locomotive activity, and protects from early mortality. These data qualify omigapil, which is in late phase of clinical development for human use, as a drug candidate for the treatment of MDC1A. Topics: Animals; Apoptosis; Body Weight; Glyceraldehyde-3-Phosphate Dehydrogenases; Laminin; Mice; Mice, Knockout; Motor Activity; Muscle, Skeletal; Muscular Dystrophy, Animal; Nuclear Proteins; Oxepins; p300-CBP Transcription Factors; Signal Transduction; Tumor Suppressor Protein p53; Ubiquitin-Protein Ligases | 2009 |