oxepins and Muscular-Dystrophies

oxepins has been researched along with Muscular-Dystrophies* in 2 studies

Other Studies

2 other study(ies) available for oxepins and Muscular-Dystrophies

ArticleYear
Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J) mouse model of congenital muscular dystrophy.
    PloS one, 2013, Volume: 8, Issue:6

    Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients.. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected.. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis.. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients.

    Topics: Administration, Oral; Animals; Fibrosis; Forelimb; Hindlimb; Humans; Laminin; Mice; Mice, Knockout; Muscle Strength; Muscle, Skeletal; Muscular Dystrophies; Muscular Dystrophy, Animal; Oxepins; Respiratory Rate

2013
Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice.
    EMBO molecular medicine, 2011, Volume: 3, Issue:8

    Mutations in LAMA2 cause a severe form of congenital muscular dystrophy, called MDC1A. Studies in mouse models have shown that transgenic expression of a designed, miniaturized form of the extracellular matrix molecule agrin ('mini-agrin') or apoptosis inhibition by either overexpression of Bcl2 or application of the pharmacological substance omigapil can ameliorate the disease. Here, we tested whether mini-agrin and anti-apoptotic agents act on different pathways and thus exert additive benefits in MDC1A mouse models. By combining mini-agrin with either transgenic Bcl2 expression or oral omigapil application, we show that the ameliorating effect of mini-agrin, which acts by restoring the mechanical stability of muscle fibres and, thereby, reduces muscle fibre breakdown and concomitant fibrosis, is complemented by apoptosis inhibitors, which prevent the loss of muscle fibres. Treatment of mice with both agents results in improved muscle regeneration and increased force. Our results show that the combination of mini-agrin and anti-apoptosis treatment has beneficial effects that are significantly bigger than the individual treatments and suggest that such a strategy might also be applicable to MDC1A patients.

    Topics: Agrin; Animals; Disease Models, Animal; Histocytochemistry; Immunohistochemistry; Laminin; Mice; Mice, Transgenic; Muscles; Muscular Dystrophies; Neuromuscular Agents; Oxepins; Proto-Oncogene Proteins c-bcl-2; Rodent Diseases; Survival Analysis

2011