oxazolone has been researched along with Bronchial-Spasm* in 1 studies
1 other study(ies) available for oxazolone and Bronchial-Spasm
Article | Year |
---|---|
In vivo pharmacological characterisation of bilastine, a potent and selective histamine H1 receptor antagonist.
We set out to establish the in vivo histamine H(1) receptor antagonistic (antihistaminic) and antiallergic properties of bilastine.. In vivo antihistaminic activity experiments consisted of measurement of: inhibition of increase in capillary permeability and reduction in microvascular extravasation and bronchospasm in rats and guinea pigs induced by histamine and other inflammatory mediators; and protection against lethality induced by histamine and other inflammatory mediators in rats. In vivo antiallergic activity experiments consisted of measurement of passive and active cutaneous anaphylactic reactions as well as type III and type IV allergic reactions in sensitised rodents.. In the in vivo antihistaminic activity experiments, bilastine was shown to have a positive effect, similar to that of cetirizine and more potent than that of fexofenadine. The results of the in vivo antiallergic activity experiments showed that the properties of bilastine in this setting are similar to those observed for cetirizine and superior to fexofenadine in the model of passive cutaneous anaphylactic reaction. When active cutaneous anaphylactic reaction experiments were conducted, bilastine showed significant activity, less potent than that observed with cetirizine but superior to that of fexofenadine. Evaluation of the type III allergic reaction showed that of the antihistamines only bilastine was able to inhibit oedema in sensitised mice, although its effect in this respect was much less potent than that observed with dexamethasone. In terms of the type IV allergic reaction, neither bilastine, cetirizine nor fexofenadine significantly modified the effect caused by oxazolone.. The results of our in vivo preclinical studies corroborate those obtained from previously conducted in vitro experiments of bilastine, and provide evidence that bilastine possesses antihistaminic as well as antiallergic properties, with similar potency to cetirizine and superior potency to fexofenadine. Topics: Animals; Benzimidazoles; Bradykinin; Bronchial Spasm; Capillary Permeability; Cetirizine; Dermatitis; Dose-Response Relationship, Drug; Guinea Pigs; Histamine; Histamine Antagonists; Hypersensitivity; Male; Mice; Molecular Structure; Oxazolone; Piperidines; Rats; Rats, Wistar; Receptors, Histamine H1; Serotonin; Structure-Activity Relationship; Terfenadine; Time Factors | 2006 |