oxalylglycine and Neoplasms

oxalylglycine has been researched along with Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for oxalylglycine and Neoplasms

ArticleYear
Tumour blood vessel normalisation by prolyl hydroxylase inhibitor repaired sensitivity to chemotherapy in a tumour mouse model.
    Scientific reports, 2017, 03-31, Volume: 7

    Blood vessels are important tissue structures that deliver oxygen and nutrition. In tumour tissue, abnormal blood vessels, which are hyperpermeable and immature, are often formed; these tissues also have irregular vascularisation and intravasation. This situation leads to hypoperfusion in tumour tissue along with low oxygen and nutrition depletion; this is also called the tumour microenvironment and is characterised by hypoxia, depleted nutrition, low pH and high interstitial pressure. This environment induces resistance to anticancer drugs, which causes an increase in anticancer drug doses, leading to increased side effects. We hypothesised that normalised tumour blood vessels would improve tumour tissue perfusion, resupply nutrition and re-oxygenate the tumour tissue. Chemotherapy would then be more effective and cause a decrease in anticancer drug doses. Here we report a neovascularisation-inducing drug that improved tumour vascular abnormalities, such as low blood flow, blood leakage and abnormal vessel structure. These results could lead to not only an increased chemo-sensitivity and tissue-drug distribution but also an up-regulated efficiency for cancer chemotherapy. This suggests that tumour blood vessel normalisation therapy accompanied by angiogenesis may be a novel strategy for cancer therapy.

    Topics: Amino Acids, Dicarboxylic; Animals; Antineoplastic Agents; Cell Line, Tumor; Disease Models, Animal; Female; Mice, Inbred C57BL; Neoplasms; Neovascularization, Pathologic; Prolyl-Hydroxylase Inhibitors; Tumor Hypoxia; Tumor Microenvironment

2017
Rhapontigenin inhibited hypoxia inducible factor 1 alpha accumulation and angiogenesis in hypoxic PC-3 prostate cancer cells.
    Biological & pharmaceutical bulletin, 2011, Volume: 34, Issue:6

    Hypoxia inducible factor 1 alpha (HIF-1α) is frequently over-expressed in the numerous types of cancer and plays an important role in angiogenesis. In the present study, the inhibitory mechanism of rhapontigenin isolated from Vitis coignetiae was investigated on HIF-1α stability and angiogenesis in human prostate cancer PC-3 cells. Rhapontigenin significantly suppressed HIF-1α accumulation at protein level but not at mRNA level in PC-3 cells under hypoxia. Also, rhapontigenin suppressed hypoxia-induced HIF-1α activation in various cancer cells, such as colorectal adenocarcinoma (SW620), breast adenocarcinoma (MCF-7), fibrosarcoma (HT-1080) and prostate carcinoma (LNCaP). Interestingly, rhapontigenin had more potency in inhibition of hypoxia-induced HIF-1α expression than that of resveratrol, a known HIF-1α inhibitor. In addition, rhapontigenin promoted hypoxia-induced HIF-1α degradation and cycloheximide (CHX) blocked protein synthesis. A prolyl hydroxylase (PHD) inhibitor dimethyloxalylglycine (DMOG) is usually utilized to examine whether prolyl hydroxylation is involved in inhibition of HIF-1α accumulation. Here, DMOG recovered HIF-1α accumulation inhibited by rhapontigenin. Immunoprecipitation assay also revealed that rhapotigenin enhanced the binding of hydroxylated HIF-1α to von Hippel-Lindau (VHL) tumor suppressor protein. Furthermore, rhapontigenin reduced vascular endothelial growth factor (VEGF) secretion in hypoxic PC-3 cells as well as suppressed tube formation in human umbilical vein endothelial cells (HUVECs) treated by the conditioned media of hypoxic PC-3 cells. However, anti-angiogenic effect of rhapontigenin in hypoxic PC-3 cells was reversed by DMOG. Taken together, these findings suggest that rhapontigenin inhibits HIF-1α accumulation and angiogenesis in PC-3 prostate cancer cells.

    Topics: Amino Acids, Dicarboxylic; Angiogenesis Inhibitors; Carcinoma; Cell Hypoxia; Cell Line; Cell Line, Tumor; Culture Media, Conditioned; Endothelium, Vascular; Enzyme Inhibitors; Female; Humans; Hydroxylation; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Neoplasms; Neovascularization, Pathologic; Procollagen-Proline Dioxygenase; Prostatic Neoplasms; Protein Processing, Post-Translational; Stilbenes; Vascular Endothelial Growth Factor A; Von Hippel-Lindau Tumor Suppressor Protein

2011