oxadiazoles has been researched along with Necrosis* in 7 studies
7 other study(ies) available for oxadiazoles and Necrosis
Article | Year |
---|---|
Chemosensitivity and chemoresistance in endometriosis - differences for ectopic versus eutopic cells.
Endometriosis is a common gynaecological disease defined by the presence of endometrium-like tissue outside the uterus. This complex disease, often accompanied by severe pain and infertility, causes a significant medical and socioeconomic burden; hence, novel strategies are being sought for the treatment of endometriosis. Here, we set out to explore the cytotoxic effects of a panel of compounds to find toxins with different efficiency in eutopic versus ectopic cells, thus highlighting alterations in the corresponding molecular pathways.. The effect on cellular viability of 14 compounds was established in a cohort of paired eutopic and ectopic endometrial stromal cell samples from 11 patients. The biological targets covered by the panel included pro-survival enzymes, cytoskeleton proteins, the proteasome and the cell repair machinery.. Protein kinase inhibitors GSK690693, ARC-775 and sorafenib, proteasome inhibitor bortezomib, and microtubule-depolymerizing toxin monomethyl auristatin E were more effective in eutopic cells. In contrast, 10 µmol/l of the anthracycline toxin doxorubicin caused cellular death in ectopic cells more effectively than in eutopic cells. The large-scale sequencing of mRNA isolated from doxorubicin-treated and control cells indicated different survival strategies in eutopic versus ectopic endometrium.. Overall, the results confirm evidence of large-scale metabolic reprogramming in endometriotic cells, which underlies the observed differences in sensitivity towards toxins. The enhanced efficiency of doxorubicin interfering with redox equilibria and/or DNA repair mechanisms pinpoints key players that can be potentially used to selectively target ectopic lesions in endometriosis. Topics: Adult; Aminobenzoates; Apoptosis; Caspase 3; Cell Survival; Cells, Cultured; Doxorubicin; Drug Resistance; Endometriosis; Endometrium; Epithelial Cells; Female; Humans; Necrosis; Oligopeptides; Oxadiazoles; Peritoneal Diseases; Sorafenib; Stromal Cells; Young Adult | 2019 |
Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin.
Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn Topics: A549 Cells; Antineoplastic Agents; Antioxidants; Apoptosis; Benzimidazoles; Fibroblasts; Humans; Models, Molecular; Necrosis; Oxadiazoles; Protein Binding; Reactive Oxygen Species; Serum Albumin, Bovine; X-Ray Diffraction; Zinc | 2018 |
Mechanism based neurotoxicity of mGlu5 positive allosteric modulators--development challenges for a promising novel antipsychotic target.
Previous work has suggested that activation of mGlu5 receptor augments NMDA receptor function and thereby may constitute a rational approach addressing glutamate hypofunction in schizophrenia and a target for novel antipsychotic drug development. Here, we report the in vitro activity, in vivo efficacy and safety profile of 5PAM523 (4-Fluorophenyl){(2R,5S)-5-[5-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-3-yl]-2-methylpiperidin-1-yl}methanone), a structurally novel positive allosteric modulator selective of mGlu5. In cells expressing human mGlu5 receptor, 5PAM523 potentiated threshold responses to glutamate in fluorometric calcium assays, but does not have any intrinsic agonist activity. 5PAM523 acts as an allosteric modulator as suggested by the binding studies showing that 5PAM523 did not displace the binding of the orthosteric ligand quisqualic acid, but did partially compete with the negative allosteric modulator, MPyEP. In vivo, 5PAM523 reversed amphetamine-induced locomotor activity in rats. Therefore, both the in vitro and in vivo data demonstrate that 5PAM523 acts as a selective mGlu5 PAM and exhibits anti-psychotic like activity. To study the potential for adverse effects and particularly neurotoxicity, brain histopathological exams were performed in rats treated for 4 days with 5PAM523 or vehicle. The brain exam revealed moderate to severe neuronal necrosis in the rats treated with the doses of 30 and 50 mg/kg, particularly in the auditory cortex and hippocampus. To investigate whether this neurotoxicity is mechanism specific to 5PAM523, similar safety studies were carried out with three other structurally distinct selective mGlu5 PAMs. Results revealed a comparable pattern of neuronal cell death. Finally, 5PAM523 was tested in mGlu5 knock-out (KO) and wild type (WT) mice. mGlu5 WT mice treated with 5PAM523 for 4 days at 100 mg/kg presented significant neuronal death in the auditory cortex and hippocampus. Conversely, mGlu5 KO mice did not show any neuronal loss by histopathology, suggesting that enhancement of mGlu5 function is responsible for the toxicity of 5PAM523. This study reveals for the first time that augmentation of mGlu5 function with selective allosteric modulators results in neurotoxicity. Topics: Allosteric Regulation; Animals; Antipsychotic Agents; Benzamides; Brain; Cell Death; Cells, Cultured; CHO Cells; Cricetulus; Excitatory Amino Acid Agents; Female; Humans; Male; Mice, 129 Strain; Mice, Knockout; Necrosis; Neurons; Neurotoxicity Syndromes; Oxadiazoles; Rats, Sprague-Dawley; Rats, Wistar; Receptor, Metabotropic Glutamate 5 | 2014 |
The glutathione S-transferase inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol overcomes the MDR1-P-glycoprotein and MRP1-mediated multidrug resistance in acute myeloid leukemia cells.
There has been an ever growing interest in the search for new anti-tumor compounds that do not interact with MDR1-Pgp and MRP1 drug transporters and so circumvent the effect of these proteins conferring multidrug resistance (MDR) and poor prognosis in AML patients. We have investigated the cytotoxic activity of the strong glutathione S-transferase (GST) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on AML (HL60) cell lines.. Functional drug efflux studies and cell proliferation assays were performed on both sensitive and MDR AML (HL60) cells after incubation with NBDHEX. Moreover, the mode of cell death (apoptosis vs. necrosis) as well as the correlation between NBDHEX susceptibility and GST activity or Bcl-2 expression was investigated.. NBDHEX is not a substrate of either MDR1-Pgp or MRP1 efflux pumps; in fact, it is not only cytotoxic toward the parental HL60 cell line, but also overcomes the MDR phenotype of its HL60/DNR and HL60/ADR variants.. The data herein reported show that NBDHEX mediates efficient killing of both MDR1-Pgp and MRP1 over-expressing AML cells. Therefore, this drug can potentially be used as an effective agent for treating MDR in AML patients. Topics: Apoptosis; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Proliferation; Drug Evaluation, Preclinical; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Flow Cytometry; Glutathione; Glutathione Transferase; Humans; Leukemia, Myeloid, Acute; Multidrug Resistance-Associated Proteins; Necrosis; Oxadiazoles; Proto-Oncogene Proteins c-bcl-2; Tumor Cells, Cultured | 2009 |
6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, a specific glutathione S-transferase inhibitor, overcomes the multidrug resistance (MDR)-associated protein 1-mediated MDR in small cell lung cancer.
In the present work, we have investigated the antitumor activity of 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on aggressive small cell lung cancer. NBDHEX not only is cytotoxic toward the parental small cell lung cancer H69 cell line (LC(50) of 2.3 +/- 0.6 micromol/L) but also overcomes the multidrug resistance of its variant, H69AR, which overexpresses the ATP-binding cassette transporter multidrug resistance-associated protein 1 (MRP1; LC(50) of 4.5 +/- 0.9 micromol/L). Drug efflux experiments, done in the presence of a specific inhibitor of MRP1, confirmed that NBDHEX is not a substrate for this export pump. Interestingly, NBDHEX triggers two different types of cell death: a caspase-dependent apoptosis in the H69AR cells and a necrotic phenotype in the parental H69 cells. The apoptotic pathway triggered by NBDHEX in H69AR cells is associated with c-Jun NH(2)-terminal kinase and c-Jun activation, whereas glutathione oxidation and activation of p38(MAPK) is observed in the NBDHEX-treated H69 cells. In contrast to the parental cells, the higher propensity to die through apoptosis of the H69AR cell line may be related to the lower expression of the antiapoptotic protein Bcl-2. Therefore, down-regulation of a factor crucial for cell survival makes H69AR cells more sensitive to the cytotoxic action of NBDHEX, which is not a MRP1 substrate. We have previously shown that NBDHEX is cytotoxic toward P-glycoprotein-overexpressing tumor cell lines. Therefore, NBDHEX seems a very promising compound in the search for new molecules able to overcome the ATP-binding cassette family of proteins, one of the major mechanisms of multidrug resistance in cancer cells. Topics: Antineoplastic Agents; Apoptosis; ATP Binding Cassette Transporter, Subfamily B, Member 1; Carcinoma, Small Cell; Cell Line, Tumor; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Enzyme Activation; Glutathione; Glutathione Transferase; Hexanols; Humans; JNK Mitogen-Activated Protein Kinases; Lung Neoplasms; Necrosis; Oxadiazoles; Oxidation-Reduction; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-jun; Substrate Specificity | 2008 |
Nitric oxide inhibits spleen cell proliferative response after burn injury by inducing cytostasis, apoptosis, and necrosis of activated T lymphocytes: role of the guanylate cyclase.
We previously showed that an overproduction of nitric oxide (NO) by macrophages was responsible for the collapse of lymphoproliferative responses after burn injury in rats. First, we demonstrate here that 10 days post-burn, the inhibition of splenocyte response to concanavalin-A results from cytostatic, apoptotic, and necrotic effects of NO on activated T cells. This was evidenced by various criteria at the levels of DNA, mitochondria, and plasma membrane. Inhibition of NO synthase by S-methylisothiourea (10 microM) normalized all the parameters. Second, we show that two soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ, restored the proliferative response in a concentration-dependent manner. LY83583 (0.5 microM) rescued T cells from apoptosis. Similar results were obtained with KT5823 (5 microM) a specific inhibitor of protein kinase G (PKG). In contrast, neither LY83583 nor KT5823 inhibited NO-induced necrosis. These results suggest that NO blocked T cells in the G1 phase and induced apoptosis through a sGC-PKG-dependent pathway and necrosis through an independent one. Topics: Alkaloids; Aminoquinolines; Animals; Apoptosis; Burns; Carbazoles; Cell Division; Cells, Cultured; Enzyme Inhibitors; Guanylate Cyclase; Indoles; Lymphocyte Activation; Male; Necrosis; Nitric Oxide; Oxadiazoles; Protein Kinase Inhibitors; Quinoxalines; Rats; Rats, Wistar; Skin; Spleen; T-Lymphocytes | 2003 |
Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function.
In the present study a novel nitric oxide (NO) donor, CAS-1609, was utilized as a means of coronary NO replenishment in a canine model of myocardial ischemia-reperfusion. Administration of CAS-1609 (1.25 mg iv) 10 min before reperfusion, followed by a 1 mg/h intracoronary infusion throughout the 4.5-h reperfusion period, resulted in significant improvement in postischemic transmural myocardial blood flow (0.66 +/- 0.09 vs. 0.37 +/- 0.08 ml.min-1.g-1 for saline vehicle, P < 0.05). Dogs receiving NO supplementation also exhibited a significant recovery of myocardial contractility after 4.5 h of reperfusion (30 +/- 2% area ejection fraction vs. 22 +/- 2% for saline vehicle, P < 0.05). Moreover, myocardial necrosis as a percentage of the area at risk was reduced from 28.9 +/- 4.3% in the saline group to 8.5 +/- 2.6% in the CAS-1609 group (P < 0.01), while ischemic zone myeloperoxidase activity, indicative of neutrophil infiltration, was also attenuated by 70% with NO therapy. Injection of acetylcholine and nitroglycerin into the left circumflex coronary artery revealed a significant impairment of vasodilator responses in the saline vehicle dogs at 2 h of reperfusion. However, dogs treated with the NO donor demonstrated postischemic vasodilator responses which were similar to baseline (P = not significant vs. baseline). These studies demonstrate that intracoronary administration of NO significantly augments postischemic coronary blood flow and contractile function following ischemia and reperfusion. In addition, NO therapy reduces coronary vascular injury, attenuates myocardial necrosis, and reduces neutrophil infiltration. The cardioprotective actions of intracoronary NO administration may be related to the potent antineutrophil actions of NO. Topics: Animals; Cell Movement; Coronary Circulation; Coronary Vessels; Dogs; Female; Hemodynamics; Male; Myocardial Contraction; Myocardial Reperfusion Injury; Myocardium; Necrosis; Neutrophils; Nitric Oxide; Oxadiazoles; Peroxidase; Vasodilator Agents; Vasomotor System | 1995 |