oxadiazoles and Hypertrophy

oxadiazoles has been researched along with Hypertrophy* in 4 studies

Other Studies

4 other study(ies) available for oxadiazoles and Hypertrophy

ArticleYear
Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1.
    Cellular signalling, 2020, Volume: 72

    Cardiac fibrosis and myocyte hypertrophy are hallmarks of the cardiac remodelling process in cardiomyopathies such as heart failure (HF). Dyslipidemia or dysregulation of lipids contribute to HF. The dysregulation of high density lipoproteins (HDL) could lead to altered levels of other lipid metabolites that are bound to it such as sphingosine-1- phosphate (S1P). Recently, it has been shown that S1P and its analogue dihydrosphingosine-1-phosphate (dhS1P) are bound to HDL in plasma. The effects of dhS1P on cardiac cells have been obscure. In this study, we show that extracellular dhS1P is able to increase collagen synthesis in neonatal rat cardiac fibroblasts (NCFs) and cause hypertrophy of neonatal cardiac myocytes (NCMs). The janus kinase/signal transducer and activator (JAK/STAT) signalling pathway was involved in the increased collagen synthesis by dhS1P, through sustained increase of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). Extracellular dhS1P increased phosphorylation levels of STAT1 and STAT3 proteins, also caused an early increase in gene expression of transforming growth factor-β (TGFβ), and sustained increase in TIMP1. Inhibition of JAKs led to inhibition of TIMP1 and TGFβ gene and protein expression. We also show that dhS1P is able to cause NCM hypertrophy through S1P-receptor-1 (S1PR1) signalling which is opposite to that of its analogue, S1P. Taken together, our results show that dhS1P increases collagen synthesis in cardiac fibroblasts causing fibrosis through dhS1P-JAK/STAT-TIMP1 signalling.

    Topics: Animals; Animals, Newborn; Biomarkers; Cell Differentiation; Collagen; Fibroblasts; Gene Expression Regulation; Hypertrophy; Janus Kinases; Lysophospholipids; Matrix Metalloproteinase 2; Models, Biological; Myocardium; Myocytes, Cardiac; Oxadiazoles; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Smad2 Protein; Sphingosine; STAT Transcription Factors; Thiophenes; Time Factors; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta

2020
Nitric oxide attenuates endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 in vascular smooth muscle cells by a cGMP-dependent pathway.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:4

    Nitric oxide (NO), in addition to its vasodilator action, has also been shown to antagonize the mitogenic and hypertrophic responses of growth factors and vasoactive peptides such as endothelin-1 (ET-1) in vascular smooth muscle cells (VSMCs). However, the mechanism by which NO exerts its antimitogenic and antihypertrophic effect remains unknown. Therefore, the aim of this study was to determine whether NO generation would modify ET-1-induced signaling pathways involved in cellular growth, proliferation, and hypertrophy in A-10 VSMCs. Treatment of A-10 VSMCs with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP), two NO donors, attenuated the ET-1-enhanced phosphorylation of several key components of growth-promoting and hypertrophic signaling pathways such as ERK1/2, PKB, and Pyk2. On the other hand, inhibition of the endogenous NO generation with N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, increased the ET-1-induced phosphorylation of these signaling components. Since NO mediates its effect principally through a cGMP-soluble guanylyl cyclase (sGC) pathway, we investigated the role of these molecules in NO action. 8-Bromoguanosine 3',5'-cyclic monophosphate, a nonmetabolizable and cell-permeant analog of cGMP, exhibited a effect similar to that of SNAP and SNP. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of sGC, reversed the inhibitory effect of NO on ET-1-induced responses. SNAP treatment also decreased the protein synthesis induced by ET-1. Together, these data demonstrate that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB, and Pyk2 and also antagonized the hypertrophic effects of ET-1. It may be suggested that NO-induced generation of cGMP contributes to the inhibition of ET-1-induced mitogenic and hypertrophic responses in VSMCs.

    Topics: Animals; Aorta, Thoracic; Cell Proliferation; Cells, Cultured; Cyclic GMP; Dose-Response Relationship, Drug; Endothelin-1; Enzyme Inhibitors; Focal Adhesion Kinase 2; Guanylate Cyclase; Hypertrophy; Leucine; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroprusside; Oxadiazoles; Phosphorylation; Protein Biosynthesis; Proto-Oncogene Proteins c-akt; Quinoxalines; Rats; Receptors, Cytoplasmic and Nuclear; S-Nitroso-N-Acetylpenicillamine; Signal Transduction; Soluble Guanylyl Cyclase

2007
Modification of mucus in animal models of disease.
    Advances in experimental medicine and biology, 1977, Volume: 89

    Topics: Animals; Bronchi; Disease Models, Animal; Epithelium; Glycoproteins; Hydrogen-Ion Concentration; Hypertrophy; Isoproterenol; Mucus; Nicotiana; Oxadiazoles; Plants, Toxic; Rats; Respiratory Tract Diseases; Smoke; Swine; Trachea

1977
Goblet cell glycoprotein and tracheal gland hypertrophy in rat airways: the effect of tobacco smoke with or without the anti-inflammatory agent phenylmethyloxadiazole.
    British journal of experimental pathology, 1973, Volume: 54, Issue:2

    Topics: Animals; Anti-Inflammatory Agents; Epithelium; Glycoproteins; Hypertrophy; Lung; Mucins; Neuraminidase; Oxadiazoles; Rats; Smoking; Staining and Labeling; Trachea

1973