oxadiazoles and Cognition-Disorders

oxadiazoles has been researched along with Cognition-Disorders* in 6 studies

Reviews

1 review(s) available for oxadiazoles and Cognition-Disorders

ArticleYear
Treatment of perinatal viral infections to improve neurologic outcomes.
    Pediatric research, 2017, Volume: 81, Issue:1-2

    Viral infections in the fetus or newborn often involve the central nervous system (CNS) and can lead to significant morbidity and mortality. Substantial progress has been made in identifying interventions decreasing adverse neurodevelopmental outcomes in this population. This review highlights progress in treatment of important viruses affecting the CNS in these susceptible hosts, focusing on herpes simplex virus (HSV), cytomegalovirus (CMV), human immunodeficiency virus (HIV), and enteroviruses. The observation that high-dose acyclovir improves mortality in neonatal HSV disease culminated decades of antiviral research for this disease. More recently, prolonged oral acyclovir was found to improve neurologic morbidity after neonatal HSV encephalitis. Ganciclovir, and more recently its oral prodrug valganciclovir, is effective in improving hearing and neurodevelopment after congenital CMV infection. Increasing evidence suggests early control of perinatal HIV infection has implications for neurocognitive functioning into school age. Lastly, the antiviral pleconaril has been studied for nearly two decades for treating severe enteroviral infections, with newer data supporting a role for this drug in neonates. Identifying common mechanisms for pathogenesis of viral CNS disease during this critical period of brain development is an important research goal, highlighted by the recent emergence of Zika virus as a potential cause of fetal neurodevelopmental abnormalities.

    Topics: Acyclovir; Antiviral Agents; Brain; Cognition; Cognition Disorders; Encephalitis, Herpes Simplex; Enterovirus Infections; Female; Ganciclovir; HIV Infections; Humans; Infant, Newborn; Nervous System Diseases; Oxadiazoles; Oxazoles; Pregnancy; Valganciclovir; Virus Diseases

2017

Trials

1 trial(s) available for oxadiazoles and Cognition-Disorders

ArticleYear
Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial.
    The Lancet. Neurology, 2019, Volume: 18, Issue:11

    Ozanimod, a sphingosine 1-phosphate receptor modulator, selectively binds to receptor subtypes 1 and 5 with high affinity. The RADIANCE phase 2 study showed that ozanimod had better efficacy than placebo on MRI measures, with a favourable safety profile, in participants with relapsing multiple sclerosis. The SUNBEAM study aimed to assess the safety and efficacy of ozanimod versus intramuscular interferon beta-1a in participants with relapsing multiple sclerosis.. SUNBEAM was a randomised, double-blind, double-dummy, active-controlled phase 3 trial done at 152 academic medical centres and clinical practices in 20 countries. We enrolled participants aged 18-55 years with relapsing multiple sclerosis, baseline expanded disability status scale (EDSS) score of 0·0-5·0, and either at least one relapse within the 12 months before screening or at least one relapse within 24 months plus at least one gadolinium-enhancing lesion within 12 months before screening. Participants were randomly assigned 1:1:1 by a blocked algorithm stratified by country and baseline EDSS score to at least 12 months treatment of either once-daily oral ozanimod 1·0 mg or 0·5 mg or weekly intramuscular interferon beta-1a 30 μg. Participants, investigators, and study staff were masked to treatment assignment. The primary endpoint was annualised relapse rate (ARR) during the treatment period and was assessed in the intention-to-treat population. Safety was assessed in all participants according to the highest dose of ozanimod received. This trial is registered at ClinicalTrials.gov, number NCT02294058 and EudraCT, number 2014-002320-27.. Between Dec 18, 2014, and Nov 12, 2015, 1346 participants were enrolled and randomly assigned to ozanimod 1·0 mg (n=447), ozanimod 0·5 mg (n=451), or interferon beta-1a (n=448). 91 (6·8%) participants discontinued the study drug (29 in the ozanimod 1·0 mg group; 26 in the ozanimod 0·5 mg group; and 36 in the interferon beta-1a group). Adjusted ARRs were 0·35 (0·28-0·44) for interferon beta-1a, 0·18 (95% CI 0·14-0·24) for ozanimod 1·0 mg (rate ratio [RR] of 0·52 [0·41-0·66] vs interferon beta-1a; p<0·0001), and 0·24 (0·19-0·31) for ozanimod 0·5 mg (RR 0·69 [0·55-0·86] vs interferon beta-1a; p=0·0013). Few ozanimod-treated participants discontinued treatment because of adverse events (13 [2·9%] who received ozanimod 1·0 mg; seven [1·5%] who received ozanimod 0·5 mg; and 16 [3·6%] who received interferon beta-1a). No first-dose, clinically significant bradycardia or second-degree or third-degree atrioventricular block was reported. The incidence of serious adverse events was low and similar across treatment groups (13 [2·9%] participants who received ozanimod 1·0 mg; 16 [3·5%] who received ozanimod 0·5 mg; and 11 [2·5%] who received interferon beta-1a). No serious opportunistic infections occurred in ozanimod-treated participants.. In participants with relapsing multiple sclerosis treated for at least 12 months, ozanimod was well tolerated and demonstrated a significantly lower relapse rate than interferon beta-1a. These findings provide support for ozanimod as an oral therapy for individuals with relapsing multiple sclerosis.. Celgene International II.

    Topics: Adult; Atrioventricular Block; Bradycardia; Brain; Cognition Disorders; Disease Progression; Female; Gray Matter; Humans; Immunosuppressive Agents; Indans; Interferon beta-1a; Magnetic Resonance Imaging; Male; Middle Aged; Multiple Sclerosis, Relapsing-Remitting; Neuroimaging; Organ Size; Oxadiazoles; Quality of Life; Severity of Illness Index; Sphingosine-1-Phosphate Receptors

2019

Other Studies

4 other study(ies) available for oxadiazoles and Cognition-Disorders

ArticleYear
A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole), improves cognition in animal models of cognitive impairment in schizophrenia and Alzheimer's disease.
    European journal of pharmacology, 2012, Jun-15, Volume: 685, Issue:1-3

    Hypofunction of brain N-methyl-d-aspartate (NMDA) receptors has been implicated in psychiatric disorders such as schizophrenia and Alzheimer's disease. Inhibition of glycine transporter-1 (GlyT1) is expected to increase glycine, a co-agonist of the NMDA receptor and, consequently, to facilitate NMDA receptor function. We have identified ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole) as a novel GlyT1 inhibitor, and here describe our in vitro and in vivo characterization of this compound. ASP2535 potently inhibited rat GlyT1 (IC(50)=92 nM) with 50-fold selectivity over rat glycine transporter-2 (GlyT2). It showed minimal affinity for many other receptors except for μ-opioid receptors (IC(50)=1.83 μM). Oral administration of ASP2535 dose-dependently inhibited ex vivo [(3)H]-glycine uptake in mouse cortical homogenate, suggesting good brain permeability. This profile was confirmed by pharmacokinetic analysis. We then evaluated the effect of ASP2535 on animal models of cognitive impairment in schizophrenia and Alzheimer's disease. Working memory deficit in MK-801-treated mice and visual learning deficit in neonatally phencyclidine (PCP)-treated mice were both attenuated by ASP2535 (0.3-3mg/kg, p.o. and 0.3-1mg/kg, p.o., respectively). ASP2535 (1-3mg/kg, p.o.) also improved the PCP-induced deficit in prepulse inhibition in rats. Moreover, the working memory deficit in scopolamine-treated mice and the spatial learning deficit in aged rats were both attenuated by ASP2535 (0.1-3mg/kg, p.o. and 0.1mg/kg, p.o., respectively). These studies provide compelling evidence that ASP2535 is a novel and centrally-active GlyT1 inhibitor that can improve cognitive impairment in animal models of schizophrenia and Alzheimer's disease, suggesting that ASP2535 may satisfy currently unmet medical needs for the treatment of these diseases.

    Topics: Administration, Oral; Alzheimer Disease; Animals; Brain; Cognition Disorders; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Female; Glycine Plasma Membrane Transport Proteins; Humans; Inhibitory Concentration 50; Male; Memory Disorders; Mice; Oxadiazoles; Permeability; Rats; Rats, Wistar; Schizophrenia; Triazoles

2012
MK-7128, a novel CB1 receptor inverse agonist, improves scopolamine-induced learning and memory deficits in mice.
    Behavioural pharmacology, 2011, Volume: 22, Issue:2

    Cannabinoid receptors (CBRs) play an important role in a variety of physiological functions and have been considered drug targets for obesity and psychiatric disorders. In particular, the CB1R is highly expressed in brain regions crucial to learning and memory processes, and several lines of evidence indicate that pharmacological blockade of this receptor could have therapeutic applications in the treatment of cognitive disorders. In this study, we investigated whether MK-7128 (0.1, 0.3, and 1 mg/kg, orally), a novel and selective CB1R inverse agonist, could improve learning and memory deficits induced by scopolamine (1 mg/kg, subcutaneously) in mice. The investigators also assessed CB1R occupancy in the brain to ensure target engagement of MK-7128, and showed that MK-7128 significantly improved both Y-maze spontaneous alternation and object habituation performance in scopolamine-treated mice and inhibits the binding of radioiodinated AM251 in murine cortex and hippocampus. These data indicate that MK-7128 improves cognitive performance in a model of cholinergic hypofunction and suggest that efficacy is achieved at relatively low levels of CB1R occupancy in the brain. Our results extend earlier findings suggesting a role of CB1Rs in the modulation of memory processes and a potential therapeutic application for CB1R inverse agonists in cognitive disorders.

    Topics: Animals; Azetidines; Cerebral Cortex; Cognition Disorders; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Inverse Agonism; Hippocampus; Male; Maze Learning; Memory Disorders; Mice; Mice, Inbred C57BL; Oxadiazoles; Piperidines; Protein Binding; Pyrazoles; Receptor, Cannabinoid, CB1; Scopolamine

2011
A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S )-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer's disease.
    Journal of neurochemistry, 2011, Volume: 119, Issue:6

    Alzheimer's disease (AD) is a neurodegenerative disorder leading to a progressive loss of cognitive function and is pathologically characterized by senile plaques and neurofibrillary tangles. Glycogen synthase kinase-3 (GSK-3) is involved in AD pathogenesis. GSK-3 is reported not only to phosphorylate tau, a major component of neurofibrillary tangles, but also to regulate the production of amyloid β, which is deposited in senile plaques. Therefore, pharmacological inhibition of GSK-3 is considered an attractive therapeutic approach. In this study, we report the pharmacological effects of a novel GSK-3 inhibitor, 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole (MMBO), which displays high selectivity for GSK-3 and brain penetration following oral administration. MMBO inhibited tau phosphorylation in primary neural cell culture and also in normal mouse brain. When administered to a transgenic mouse model of AD, MMBO significantly decreased hippocampal tau phosphorylation at GSK-3 sites. Additionally, chronic MMBO administration suppressed tau pathology as assessed by AT8-immunoreactivity without affecting amyloid β pathology. Finally, in behavioral assessments, MMBO significantly improved memory and cognitive deficits in the Y-maze and in novel object recognition tests in the transgenic AD mouse model. These results indicate that pharmacological GSK-3 inhibition ameliorates behavioral dysfunction with suppression of tau phosphorylation in an AD mouse model, and that MMBO might be beneficial for AD treatment.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Benzofurans; Brain; Cell Culture Techniques; Cerebral Cortex; Cognition Disorders; Disease Models, Animal; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Exploratory Behavior; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Maze Learning; Mice; Mice, Transgenic; Mutation; Neurons; Oxadiazoles; Peptide Fragments; Phosphorylation; Presenilin-1; tau Proteins; Time Factors

2011
Role of channel activation in cognitive enhancement mediated by alpha7 nicotinic acetylcholine receptors.
    British journal of pharmacology, 2009, Volume: 158, Issue:6

    Several agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) have been developed for treatment of cognitive deficits. However, agonist efficacy in vivo is difficult to reconcile with rapid alpha7 nAChR desensitization in vitro; and furthermore, the correlation between in vitro receptor efficacy and in vivo behavioural efficacy is not well delineated. The possibility that agonists of this receptor actually function in vivo as inhibitors via desensitization has not been finally resolved.. Two structurally related alpha7 nAChR agonists were characterized and used to assess the degree of efficacy required in a behavioural paradigm.. NS6784 activated human and rat alpha7 nAChR with EC(50)s of 0.72 and 0.88 microM, and apparent efficacies of 77 and 97% respectively. NS6740, in contrast, displayed little efficacy at alpha7 nAChR (<2% in oocytes, < or =8% in GH4C1 cells), although its agonist-like properties were revealed by adding a positive allosteric modulator of alpha7 nAChRs or using the slowly desensitizing alpha7V274T receptor. In mouse inhibitory avoidance (IA) memory retention, NS6784 enhanced performance as did the 60% partial agonist A-582941. In contrast, NS6740 did not enhance performance, but blocked effects of A-582941.. Collectively, these findings suggest that a degree of alpha7 nAChR agonist efficacy is required for behavioural effects in the IA paradigm, and that such behavioural efficacy is not due to alpha7 nAChR desensitization. Also, a partial agonist of very low efficacy for this receptor could be used as an inhibitor, in the absence of alpha7 nAChR antagonists with favourable CNS penetration.

    Topics: Allosteric Regulation; alpha7 Nicotinic Acetylcholine Receptor; Animals; Avoidance Learning; Azabicyclo Compounds; Behavior, Animal; Cell Line; Cognition Disorders; Dose-Response Relationship, Drug; Furans; Humans; Male; Mice; Nicotinic Agonists; Oocytes; Oxadiazoles; Pyridazines; Pyrroles; Rats; Receptors, Nicotinic; Xenopus laevis

2009