oxadiazoles has been researched along with Amnesia* in 5 studies
5 other study(ies) available for oxadiazoles and Amnesia
Article | Year |
---|---|
Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer's disease.
Thirty ferulic acid-based 1,3,4-oxadiazole molecular hybrids were designed, synthesized, and screened them for multifunctional inhibitory potential against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and beta-secretase-1 (BACE-1). Compound 6j was the most potent inhibitor of AChE (IC Topics: Acetylcholinesterase; Administration, Oral; Alzheimer Disease; Amnesia; Amyloid beta-Peptides; Animals; Butyrylcholinesterase; Cell Line, Tumor; Cholinesterase Inhibitors; Coumaric Acids; Dose-Response Relationship, Drug; Drug Design; Female; Humans; Male; Molecular Docking Simulation; Molecular Structure; Neuroprotective Agents; Oxadiazoles; Protein Aggregates; Rats; Rats, Wistar; Scopolamine; Structure-Activity Relationship | 2020 |
AC-3933, a benzodiazepine partial inverse agonist, improves memory performance in MK-801-induced amnesia mouse model.
AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor. Topics: Amnesia; Animals; Disease Models, Animal; Dizocilpine Maleate; Male; Maze Learning; Memory; Mice; Naphthyridines; Oxadiazoles; Receptors, GABA-A | 2016 |
In vivo pharmacological characterization of AC-3933, a benzodiazepine receptor partial inverse agonist for the treatment of Alzheimer's disease.
GABAergic neurons are known to inhibit neural transduction and therefore negatively affect excitatory neural circuits in the brain. We have previously reported that 5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one (AC-3933), a partial inverse agonist for the benzodiazepine receptor (BzR), reverses GABAergic inhibitory effect on cholinergic neurons, and thus enhances acetylcholine release from these neurons in rat hippocampal slices. In this study, we evaluated AC-3933 potential for the treatment of Alzheimer's disease, a disorder characterized by progressive decline mainly in cholinergic function. Oral administration of AC-3933 (0.01-0.03mg/kg) resulted in the amelioration of scopolamine-induced amnesia, as well as a shift in electroencephalogram (EEG) relative power characteristic of pro-cognitive cholinergic activators, such as donepezil. In addition, treatment with AC-3933 even at the high dose of 100mg/kg p.o. produced no seizure or anxiety, two major adverse effects of BzR inverse agonists developed in the past. These findings indicate that AC-3933 with its low risk for side effects may be useful in the treatment of Alzheimer's disease. Topics: Alzheimer Disease; Amnesia; Animals; Brain; Drug Inverse Agonism; Electroencephalography; GABA-A Receptor Antagonists; Male; Mice; Naphthyridines; Oxadiazoles; Rats; Rats, Wistar | 2014 |
Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia.
In the present study, effects of the serotonergic system of the dorsal hippocampus (CA1) on harmaline-induced amnesia were examined. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Pre-training intra-peritoneal (i.p.) administration of harmaline (1mg/kg) induced impairment of memory retention. Moreover, intra-CA1 administration of 5-HT1B/1D receptor agonist, CP94253 (5 ng/mouse), 5-HT1B/1D receptor antagonist, GR127935 (0.05 and 0.5 ng/mouse), 5-HT2A/2B/2C receptor agonist, α-methyl 5-HT (0.5 ng/mouse) and 5-HT2 receptor antagonist, cinancerine (0.5 ng/mouse) impaired memory acquisition, but did not affect locomotor activity and tail flick. Furthermore, pre-training intra-CA1 injection of subthreshold dose of CP94253 (0.05 ng/mouse) or GR127935 (0.005 ng/mouse) reversed impairment of memory acquisition induced by harmaline (1 mg/kg, i.p.). However, pre-training intra-CA1 infusion of subthreshold dose of α-methyl 5-HT (0.005 ng/mouse) or cinancerine (0.005 ng/mouse) with the administration of harmaline (0.5 and 1 mg/kg, i.p.) heighten impairment of memory acquisition. These findings implicate the involvement of CA1 serotonergic mechanism in harmaline-induced impairment of memory acquisition. Topics: Amnesia; Animals; CA1 Region, Hippocampal; Central Nervous System Stimulants; Cinanserin; Harmaline; Male; Memory; Mice, Inbred Strains; Oxadiazoles; Piperazines; Pyridines; Receptor, Serotonin, 5-HT1B; Receptor, Serotonin, 5-HT1D; Receptor, Serotonin, 5-HT2A; Receptor, Serotonin, 5-HT2B; Receptor, Serotonin, 5-HT2C; Serotonin; Serotonin 5-HT1 Receptor Agonists; Serotonin 5-HT1 Receptor Antagonists | 2014 |
Cognitive effects of SL65.0155, a serotonin 5-HT4 receptor partial agonist, in animal models of amnesia.
Given that several data suggest the involvement of serotonergic (5-HT) system, particularly the serotonin 5-HT(4) receptors, in memory processes; this study was undertaken to investigate the role of serotonin 5-HT(4) receptors in different experimental models of amnesia in male Swiss mice or in male Sprague-Dawley rats, tested in learning and memory tasks. Amnesia was induced in mice by intracerebroventricular (i.c.v.) injection of beta-amyloid 1-42 fragment (BAP 1-42; 400 pmol/mouse) or of galanin (GAL) 1-29 (3 microg/mouse). Another group of animals was exposed to carbon monoxide (CO). Treatments were made 14 days, 15 min or 8 days prior to the learning trial of a step-through passive avoidance paradigm, respectively. Latency to re-enter the dark box appeared to be reduced in all treatment groups. Intraperitoneal (i.p.) administration of SL65.0155 (5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-[1-(2-phenylethyl)-4-piperidinyl]-1,3,4-oxadiazol-2(3H)-one-monohydrochloride), a serotonin 5-HT(4) receptor partial agonist (1 mg/kg/day), for 7 days prior to the learning trial, inhibited the amnesic effect of both peptides increasing the latency to re-enter the dark box also in mice exposed to CO. In rats with ibotenate-induced lesions of the nucleus basalis magnocellularis (NBM) or prenatally exposed to methylazoxymethanol (MAM), SL65.0155 (1 mg/kg/day, i.p.) administered for 7 days, improved the learning and memory capacity in animals tested in shuttle-box active avoidance and radial maze tests. These findings give further support to the hypothesis of SL65.0155 cognition-enhancing activity across a range of tasks. Topics: Amnesia; Animals; Avoidance Learning; Cognition; Dioxanes; Disease Models, Animal; Maze Learning; Mice; Oxadiazoles; Reaction Time | 2006 |