ovalbumin and Leukemia--Erythroblastic--Acute

ovalbumin has been researched along with Leukemia--Erythroblastic--Acute* in 4 studies

Other Studies

4 other study(ies) available for ovalbumin and Leukemia--Erythroblastic--Acute

ArticleYear
APRIL facilitates viral-induced erythroleukemia but is dispensable for T cell immunity and lymphomagenesis.
    Journal of leukocyte biology, 2008, Volume: 84, Issue:2

    The TNF family member, a proliferation-inducing ligand (APRIL), has been suggested to act as a costimulatory molecule in T cell responses. However, studies addressing this role in vivo are largely lacking. Here, we evaluated the effects of APRIL on physiological T cell responses in vivo. Although receptors for APRIL are expressed on a subset of T cells, neither TCR transgenic (Tg) T cell responses nor endogenous TCR responses were affected by Tg APRIL expression in vivo. Moreover, APRIL did not significantly enhance the induction of T cell lymphomas upon Moloney murine leukemia virus (MLV) infection. This clearly contrasts current belief and indicates that APRIL does not serve a major role in T cell immunity or lymphomagenesis. However, we did observe a strong increase in erythroleukemia formation after MLV inoculation of APRIL Tg mice. Strikingly, this erythroleukemia-facilitating property of APRIL was confirmed using the erythroleukemogenic Friend-MLV. Erythroleukemia in APRIL Tg mice was characterized by low hematocrits and grossly enlarged spleens with an increased percentage of erythroid precursors. Altogether, these results unveil new proerythroleukemogenic properties of APRIL.

    Topics: Animals; Autoimmunity; Flow Cytometry; Hematocrit; Heterozygote; Homozygote; Leukemia, Erythroblastic, Acute; Lymphoma, T-Cell; Mice; Mice, Inbred C57BL; Mice, Transgenic; Moloney murine leukemia virus; Ovalbumin; Receptors, Antigen, T-Cell; Stem Cells; T-Lymphocytes; Tumor Necrosis Factor Ligand Superfamily Member 13

2008
Potent CTL induction by a whole cell pertussis vaccine in anti-tumor peptide immunotherapy.
    Microbiology and immunology, 2007, Volume: 51, Issue:7

    Promising yet limited clinical responses have been reported for peptide based immunotherapy against tumors. In order to induce more potent cytolytic CD8 T cell responses, we investigated the use of Bordetella pertussis vaccine as an adjuvant for peptide immunization. A whole cell (Wc) vaccine has been known to induce a Th1 biased immune response while an acellular (Ac) vaccine tends to induce that of the Th2 type. Natural infection by B. pertussis helps to maintain a robust Th1 memory in the host population. To examine the adjuvant activity of the pertussis vaccine, we immunized mice with an ovalbumin peptide as a model tumor antigen, and monitored the development of anti-tumor activities. The addition of either the Ac or the Wc vaccine helped expand the specific CD8 T cells. However, there was a marked difference in the induced cytolytic activity where the Wc vaccine was superior to the Ac. The Wc vaccine was also more effective in inducing in vivo tumor rejection. The adjuvant activity was not only effective against ovalbumin, but was also evident when an endogenous tumor antigen, Wilms' tumor 1 gene product, was targeted. These results indicate that, although the Wc vaccine does not share the same antigen specificity with tumor cells, it can aid in the development of highly cytolytic CD8 T cells as an adjuvant at the site of peptide immunization.

    Topics: Adjuvants, Immunologic; Animals; Cancer Vaccines; Immunotherapy; Leukemia, Erythroblastic, Acute; Lymphocyte Activation; Mice; Mice, Inbred C57BL; Mice, Transgenic; Ovalbumin; Peptides; Pertussis Vaccine; T-Lymphocytes, Cytotoxic; Th1 Cells; Th2 Cells; Vaccines, Acellular; WT1 Proteins

2007
Anti-inflammatory activity of c(ILDV-NH(CH2)5CO), a novel, selective, cyclic peptide inhibitor of VLA-4-mediated cell adhesion.
    British journal of pharmacology, 1999, Volume: 126, Issue:8

    1. Small, N- to C-terminal cyclized peptides containing the leucyl-aspartyl-valine (LDV) motif from fibronectin connecting segment-1 (CS-1) have been investigated for their effects on the adhesion of human T-lymphoblastic leukaemia cells (MOLT-4) to human plasma fibronectin in vitro mediated by the integrin Very Late Antigen (VLA)-4 (alpha4beta1, CD49d/CD29). 2. Cyclo(-isoleucyl-leucyl-aspartyl-valyl-aminohexanoyl-) (c(ILDV-NH(CH2)5CO)) was approximately 5 fold more potent (IC50 3.6+/-0.44 microM) than the 25-amino acid linear CS-1 peptide. Cyclic peptides containing two more or one less methylene groups had similar potency to c(ILDV-NH(CH2)5CO) while a compound containing three less methylene groups, c(ILDV-NH(CH2)2CO), was inactive at 100 microM. 3. c(ILDV-NH(CH2)5CO) had little effect on cell adhesion mediated by two other integrins, VLA-5 (alpha5,beta1, CD49e/CD29) (K562 cell adhesion to fibronectin) or Leukocyte Function Associated molecule-1 (LFA-1, alphabeta2, CD11a/CD18) (U937 cell adhesion to Chinese hamster ovary cells transfected with intercellular adhesion molecule-1) at concentrations up to 300 microM. 4. c(ILDV-NH(CH2)5CO) inhibited ovalbumin delayed-type hypersensitivity or oxazolone contact hypersensitivity in Balb/c mice when dosed continuously from subcutaneous osmotic mini-pumps (0.1-10 mg kg(-1) day(-1)). Maximum inhibition (approximately 40%) was similar to that caused by the monoclonal antibody PS/2 (7.5 mg kg(-1) i.v.) directed against the alpha4 integrin subunit. 5. c(ILDV-NH(CH2)5CO) also inhibited oxazolone contact hypersensitivity when dosed intravenously 20 h after oxazolone challenge (1-10 mg kg(-1)). Ear swelling was reduced at 3 h and 4 h but not at 1 h and 2 h post-dose (10 mg kg(-1)). 6. Small molecule VLA-4 inhibitors derived from c(ILDV-NH(CH2)5CO) may be useful as anti-inflammatory agents.

    Topics: Amino Acid Sequence; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Adhesion; CHO Cells; Cricetinae; Dermatitis, Contact; Female; Fibronectins; Humans; Hypersensitivity, Delayed; Inflammation; Integrin alpha4beta1; Integrins; Intercellular Adhesion Molecule-1; Intercellular Signaling Peptides and Proteins; Leukemia, Erythroblastic, Acute; Leukemia, T-Cell; Mice; Mice, Inbred BALB C; Molecular Sequence Data; Ovalbumin; Oxazolone; Peptides; Rats; Receptors, Lymphocyte Homing; T-Lymphocytes; Transfection

1999
Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids.
    Nature genetics, 1996, Volume: 12, Issue:2

    Targeted modification of human chromosomal alleles by homologous recombination is a powerful approach to study gene function, but gene targeting in mammalian cells is an inefficient process. In contrast, gene targeting in a chicken pre-B cell line, DT40, is highly efficient. We have transferred human chromosome 11 into DT40 cells by microcell fusion, and find that the resulting hybrids are recombination-proficient. In these cells, targeting efficiencies into the chicken ovalbumin locus were > 90% and into the human beta-globin and Ha-ras loci were 10-15%. These modified human chromosomes can be transferred subsequently to mammalian cells for functional tests. This chromosome shuttle system allows for the efficient homologous modification of human chromosomal genes, and for subsequent phenotypic analyses of the modified alleles in different mammalian cell types.

    Topics: Alleles; Animals; B-Lymphocytes; Base Sequence; Cell Fusion; Cell Line; Chickens; Chromosomes, Human, Pair 11; Gene Targeting; Genes, ras; Globins; Humans; Hybrid Cells; Leukemia, Erythroblastic, Acute; Mice; Molecular Sequence Data; Ovalbumin; Recombination, Genetic; RNA, Messenger; Tumor Cells, Cultured

1996