ovalbumin has been researched along with Gastritis* in 7 studies
7 other study(ies) available for ovalbumin and Gastritis
Article | Year |
---|---|
OX40 Expression in Eosinophils Aggravates OVA-Induced Eosinophilic Gastroenteritis.
Eosinophils are the main inflammatory effector cells that damage gastrointestinal tissue in eosinophilic gastrointestinal diseases (EGIDs). Activation of the OX40 pathway aggravates allergic diseases, such as asthma, but it is not clear whether OX40 is expressed in eosinophils to regulate inflammation in EGIDs. In this study, we assessed the expression and effect of OX40 on eosinophils in WT and. Eosinophil infiltration, ovalbumin (OVA)-specific Ig production, OX40 expression and inflammatory factor levels in the intestine and bone marrow (BM) were investigated to evaluate inflammation. Topics: Animals; Enteritis; Eosinophilia; Eosinophils; Gastritis; Inflammation; Mice; NF-kappa B; Ovalbumin; Receptors, OX40; RNA, Messenger; TNF Receptor-Associated Factor 2 | 2022 |
Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis.
Aberrant accumulation and activation of eosinophils and potentially mast cells (MCs) contribute to the pathogenesis of eosinophilic gastrointestinal diseases (EGIDs), including eosinophilic esophagitis (EoE), gastritis (EG), and gastroenteritis (EGE). Current treatment options, such as diet restriction and corticosteroids, have limited efficacy and are often inappropriate for chronic use. One promising new approach is to deplete eosinophils and inhibit MCs with a monoclonal antibody (mAb) against sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8), an inhibitory receptor selectively expressed on MCs and eosinophils. Here, we characterize MCs and eosinophils from human EG and EoE biopsies using flow cytometry and evaluate the effects of an anti-Siglec-8 mAb using a potentially novel Siglec-8-transgenic mouse model in which EG/EGE was induced by ovalbumin sensitization and intragastric challenge. MCs and eosinophils were significantly increased and activated in human EG and EoE biopsies compared with healthy controls. Similar observations were made in EG/EGE mice. In Siglec-8-transgenic mice, anti-Siglec-8 mAb administration significantly reduced eosinophils and MCs in the stomach, small intestine, and mesenteric lymph nodes and decreased levels of inflammatory mediators. In summary, these findings suggest a role for both MCs and eosinophils in EGID pathogenesis and support the evaluation of anti-Siglec-8 as a therapeutic approach that targets both eosinophils and MCs. Topics: Animals; Antibodies, Monoclonal; Antigens, CD; Antigens, Differentiation, B-Lymphocyte; Disease Models, Animal; Enteritis; Eosinophilia; Eosinophilic Esophagitis; Eosinophils; Female; Gastritis; Gastroenteritis; Humans; Lectins; Male; Mast Cells; Mice; Mice, Inbred C57BL; Mice, Transgenic; Ovalbumin | 2019 |
Protection of montelukast on OVA-induced eosinophilic gastroenteritis via modulating IL-5, eotaxin-1 and MBP expression.
The aim of this study was to further explore the possible mechanisms of montelukast on oral mice ovalbumin-induced eosinophilic gastroenteritis in a mouse model. The results indicated that montelukast could prevent levels of eotaxin-1 and interleukin-5 in intestinal mucosa homogenate when compared with model group. Interestingly, the increase of major basic protein expression in jejunal tissue also was attenuated by treated with montelukast. Topics: Acetates; Animals; Chemokine CCL11; Cyclopropanes; Enteritis; Eosinophil Major Basic Protein; Eosinophilia; Gastritis; Gene Expression Regulation; Interleukin-5; Leukotriene Antagonists; Mice; Mice, Inbred BALB C; Ovalbumin; Quinolines; Sulfides | 2013 |
The effects of montelukast on eosinophilic gastroenteritis in a mouse model.
Gastrointestinal eosinophilic (EG) is a rare and heterogeneous condition characterized by patchy or diffuse eosinophilic infiltration of gastrointestinal tissue. Pharmacological study so far has demonstrated that montelukast, an oral leukotriene receptor antagonist, might be considered in patients with this disease. The aim of this study was to evaluate the effect of montelukast on oral ovalbumin (OVA) allergen induced EG inflammation in mice and to suggest some mechanisms underlying this effect. Twenty-four mice were divided into three experimental groups: PBS control, OVA group, and montelukast treated group. The mice were sensitized intraperitoneally and challenged intragastrically with OVA, and were treated with montelukast. Gastrointestinal symptoms were observed after challenged intragastrically with OVA. Eosinophils count in blood, serum OVA specific IgE and gastrointestinal histology were evaluated. Montelukast could significantly reduce the severity of oral allergen-induced eosinophilic inflammation, villous atrophy, and associated symptoms of weight loss associated with diarrhea. Montelukast also could ameliorate OVA-induced gastrointestinal pathological lesions, which was associated with the decrease of IgE and LTD4 levels, and this might be one of the important mechanisms of montelukast that protected gastrointestinal injury from EG. These findings indicated that montelukast therapy may be a novel therapeutic approach for EG and other eosinophil-mediated diseases. Topics: Acetates; Animals; Body Weight; Cyclopropanes; Enteritis; Eosinophilia; Eosinophils; Female; Gastric Mucosa; Gastritis; Gastroenteritis; Immunoglobulin E; Inflammation; Jejunum; Leukotriene D4; Mice; Mice, Inbred BALB C; Ovalbumin; Quinolines; Stomach; Sulfides | 2013 |
Alcohol-induced gastritis prevents oral tolerance induction in mice.
Despite several reports on the immunological relationship between inflammatory bowel diseases and immunoregulatory mechanisms in the gut, systematic studies addressing the impact of inflammatory processes in the gastric mucosa on events, such as oral tolerance, are still limited. Herein, we report the establishment of a novel murine model of gastritis induced by short-term administration of ethanol. The major immumological features of this clinical entity are characterized, as well as its impact on the induction of oral tolerance. Our data demonstrate that ethanol ingestion during 4 consecutive days triggered an acute inflammatory reaction in the stomach referred as ethanol-induced gastritis and characterized by hyperaemia, oedema and mixed mononuclear/polymorphonuclear cell infiltrate. Besides local immunological changes, such as high levels of gastric interleukin (IL)-4 and interferon (IFN)-gamma, systemic alterations are also observed, including increased IL-4 synthesis, enhanced levels of serum IgE and absence of IL-10 production by spleen cells. Moreover, ethanol-induced gastritis prevents oral tolerance induction to ovalbumin (OVA) as demonstrated by unaltered anti-OVA humoral and cellular immune responses in treated animals. Tissue eosinophilia after footpad immunization with OVA suggests that oral treatment with ethanol induced an allergic-type reaction. Taken together, our findings indicate that short-term ethanol ingestion is associated with gastric inflammatory events able to break immunoregulatory mechanisms that maintain mucosal homeostasis and oral tolerance. Topics: Acute Disease; Administration, Oral; Animals; Antibody Formation; Ethanol; Gastric Mucosa; Gastritis; Hypersensitivity, Delayed; Immune Tolerance; Immunity, Cellular; Immunity, Mucosal; Interferon-gamma; Interleukin-4; Mice; Mice, Inbred C57BL; Ovalbumin | 2006 |
Gastric Helicobacter infection inhibits development of oral tolerance to food antigens in mice.
The increase in the transcellular passage of intact antigens across the digestive epithelium infected with Helicobacter pylori may interfere with the regulation of mucosal immune responses. The aim of this work was to study the capacity of Helicobacter infection to inhibit the development of oral tolerance or to promote allergic sensitization and the capacity of a gastro-protective agent, rebamipide, to interfere with these processes in mice. Oral tolerance to ovalbumin (OVA) was studied in 48 C3H/He 4-week-old mice divided into four groups: (i) OVA-sensitized mice; (ii) OVA-"tolerized" mice (that is, mice that were rendered immunologically tolerant); (iii) H. felis-infected, OVA-tolerized mice; (iv) and H. felis-infected, OVA-tolerized, rebamipide-treated mice. Oral sensitization to hen egg lysozyme (HEL) was studied in 48 mice divided into four groups: (i) controls; (ii) HEL-sensitized mice; (iii) H. felis-infected, HEL-sensitized mice; and (iv) H. felis-infected, HEL-sensitized, rebamipide-treated mice. Specific anti-OVA or anti-HEL immunoglobulin E (IgE) and IgG1/IgG2a serum titers were measured by enzyme-linked immunosorbent assay. Additionally, the capacity of rebamipide to interfere with antigen presentation and T-cell activation in vitro, as well as absorption of rebamipide across the epithelial monolayer, was tested. H. felis infection led to the inhibition of oral tolerance to OVA, but rebamipide prevented this inhibitive effect of H. felis. H. felis infection did not enhance the sensitization to HEL, but rebamipide inhibited the development of this sensitization. Moreover, rebamipide inhibited in a dose-dependent manner antigen presentation and T-cell activation in vitro and was shown to be able to cross the epithelium at a concentration capable of inducing this inhibitory effect. We conclude that H. felis can inhibit the development of oral tolerance to OVA in mice and that this inhibition is prevented by rebamipide. Topics: Administration, Oral; Alanine; Anaphylaxis; Animals; Antigen Presentation; Antigens; Chickens; Female; Gastritis; Helicobacter Infections; Immune Tolerance; Immunity, Mucosal; Immunoglobulin E; Immunoglobulin G; In Vitro Techniques; Intestines; Mice; Mice, Inbred C3H; Muramidase; Ovalbumin; Quinolones; T-Lymphocytes | 2003 |
Requirements for autoimmune responses to mouse gastric autoantigens.
Autoimmune gastritis, in which the H+/K(+)-ATPase of parietal cells is the major antigen, is one of the most common autoimmune diseases. Here we examined if specific properties of the H+/K(+)-ATPase or parietal cells are involved in rendering them autoimmune targets. The model antigens beta-galactosidase and ovalbumin (OVA) were expressed in parietal cells of transgenic mice. On experimental induction of autoimmune gastritis by neonatal thymectomy, autoantibodies to beta-galactosidase developed in mice expressing beta-galactosidase in parietal cells, a response that was independent of either the response to the gastric H+/K(+)-ATPase or gastric inflammation. In contrast, mice that expressed OVA in parietal cells did not exhibit an antibody response to OVA after thymectomy. However, increasing the frequency of anti-OVA T lymphocytes in OVA-expressing mice resulted in autoantibodies to OVA and gastritis. These studies indicate that parietal cells can present a variety of antigens to the immune system. Factors such as the identity and expression level of the autoantigen and the frequency of autoreactive T cells play a role in determining the prevalence and outcome of the particular immune response. In addition, as not all mice of a particular genotype displayed autoimmunity, random events are involved in determining the target of autoimmune recognition. Topics: Animals; Autoantigens; Autoimmune Diseases; Autoimmunity; beta-Galactosidase; Female; Gastritis; Gene Expression; H(+)-K(+)-Exchanging ATPase; Immune Tolerance; Immunoglobulin G; Male; Mice; Mice, Transgenic; Ovalbumin; Parietal Cells, Gastric; Stomach; Thymus Gland; Transgenes | 2001 |