ovalbumin has been researched along with Brain-Injuries* in 4 studies
1 review(s) available for ovalbumin and Brain-Injuries
Article | Year |
---|---|
Specific physiological roles of cytosolic phospholipase A(2) as defined by gene knockouts.
The cytosolic 85 kDa phospholipase A(2) (cPLA(2)) is a unique member of the phospholipase A(2) (PLA(2)) superfamily. Because PLA(2) activity and eicosanoid production are important in normal and pathophysiological states we and the laboratory of Shimizu created a mouse deficient in cPLA(2) (cPLA(2)(-/-) mouse). cPLA(2)(-/-) mice develop normally but the females have severe reproductive defects. cPLA(2)(-/-) mice suffer smaller infarcts and fewer neurological deficits after transient occlusion of the middle cerebral artery and have less injury after administration of a dopaminergic selective neurotoxin. cPLA(2)(-/-) mice have a more rapid recovery from allergen-induced bronchoconstriction and have no airway hyperresponsiveness. Peritoneal macrophages from cPLA(2)(-/-) mice fail to produce prostaglandins, leukotriene B(4) and cysteinyl leukotrienes after stimulation. Bone marrow-derived mast cells from cPLA(2)(-/-) mice fail to produce eicosanoids in either immediate or delayed phase responses. Thus the cPLA(2) knockout mouse has revealed important roles of cPLA(2) in normal fertility, generation of eicosanoids from inflammatory cells, brain injuries and allergic responses. Furthermore the cPLA(2)(-/-) mouse reveals that the many other forms of PLA(2) cannot replace many functions of cPLA(2). The importance of cPLA(2) in inflammation and tissue injury suggests that pharmacological targeting of this enzyme may have important therapeutic benefits. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Airway Resistance; Anaphylaxis; Animals; Brain Injuries; Brain Ischemia; Bronchoconstriction; Cytosol; Female; Gene Deletion; Leukotriene B4; Leukotriene C4; Lipopolysaccharides; Litter Size; Macrophages, Peritoneal; Methacholine Chloride; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Cerebral Artery; Models, Animal; Ovalbumin; Phospholipases A; Pregnancy | 2000 |
3 other study(ies) available for ovalbumin and Brain-Injuries
Article | Year |
---|---|
Mucosal tolerance to brain antigens preserves endogenous TGFβ-1 and improves neurological outcomes following experimental craniotomy.
Intracranial surgery causes brain damage from cortical incisions, intraoperative hemorrhage, retraction, and electrocautery; collectively these injuries have recently been coined surgical brain injury (SBI). Inflammation following SBI contributes to neuronal damage. This study develops T-cells that are immunologically tolerant to brain antigen via the exposure of myelin basic protein (MBP) to airway mucosa. We hypothesize that these T-cells will migrate to the site of corticotomy, secrete immunosuppressive cytokines, such as TGFβ1, reduce inflammation, and improve neurological outcomes following SBI. A standard model for SBI was used for this experiment. C57 mice were divided into six groups: SHAM+Vehicle, SHAM+Ovalbumin, SHAM+MBP, SBI+Vehicle, SBI+OVA, and SBI+MBP. Induction of mucosal tolerance to vehicle, ovalbumin, or MBP was performed prior to SBI. Neurological scores and TBFβ1 cytokine levels were measured 48 h postoperatively. Mice receiving craniotomy demonstrated a reduction in neurological score. Animals tolerized to MBP (SBI+MBP) had better postoperative neurological scores than SBI+Vehicle and SBI+OVA. SBI inhibited the cerebral expression TGFβ1 in PBS and OVA treated groups, whereas MBP treated-animals preserved preoperative levels. Mucosal tolerance to MBP leads to significant improvement in neurological outcome that is associated with the preservation of endogenous levels of brain TGFβ1. Topics: Analysis of Variance; Animals; Brain; Brain Injuries; Craniotomy; Disease Models, Animal; Drug Tolerance; Inflammation; Mice; Mice, Inbred C57BL; Mucous Membrane; Myelin Basic Protein; Neurologic Examination; Ovalbumin; Transforming Growth Factor beta1; Treatment Outcome | 2011 |
Neuroprotection by T-cells depends on their subtype and activation state.
This study analyzes how the antigen specificity, the subtype, and the activation state of T cells modulate their recently discovered neuroprotective potential. We assessed the prevention from neuronal damage in organotypic entorhinal-hippocampal slice cultures after co-culture with Th1 and Th2 cells either specific for myelin basic protein (MBP) or ovalbumin (OVA). We found that MBP-specific Th2 cells were the most effective in preventing central nervous system (CNS) tissue from secondary injury. This neuroprotective T cell effect appears to be mediated by soluble factors. After stimulation with phorbol myristate acetate and ionomycin, all T cells were most effective in preventing neuronal death. Our data show that the T cell subtype and activation state are important features in determining the neuroprotective potential of these cells. Topics: Animals; Animals, Newborn; Brain; Brain Injuries; Cell Survival; Chemotaxis, Leukocyte; Contact Inhibition; Cytokines; Epitopes; Mice; Mice, Inbred BALB C; Myelin Basic Protein; Nerve Degeneration; Neurons; Ovalbumin; Tetradecanoylphorbol Acetate; Th1 Cells; Th2 Cells | 2002 |
Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma.
The central nervous system (CNS) enjoys a unique relationship with the immune system. Under non-pathological conditions, T cells move through the CNS but do not accumulate there. CNS trauma has been shown to trigger a response to CNS self-antigens such as myelin basic protein (MBP). Here, we examined whether the injured CNS tissue undergoes changes that permit T cell accumulation. We found that injury to CNS white matter, such as the optic nerve, led to a transiently increased accumulation of T cells (between days 3 and 21). In Lewis rats with unilaterally injured optic nerves, systemic administration of passively transferred T cells recognizing either self-antigen (MBP) or non-self-antigen (ovalbumin) resulted in accumulation of the T cells in injured optic nerve, irrespective of their antigenic specificity. The effect of the T cells on the damaged nerve, the lack of selectivity in T cell accumulation and the mechanism underlying non-selective accumulation are discussed. Topics: Animals; Blood-Brain Barrier; Brain Injuries; Cell Movement; Coloring Agents; Epitopes; Evans Blue; Female; Glial Fibrillary Acidic Protein; Kinetics; Lymphocyte Activation; Lymphocyte Count; Nerve Crush; Neuroimmunomodulation; Optic Nerve; Optic Nerve Injuries; Ovalbumin; Rats; Rats, Inbred Lew; Receptors, Antigen, T-Cell; T-Lymphocytes | 1998 |