osu-6162 and Disease-Models--Animal

osu-6162 has been researched along with Disease-Models--Animal* in 6 studies

Reviews

1 review(s) available for osu-6162 and Disease-Models--Animal

ArticleYear
Schizophrenia: from dopamine to glutamate and back.
    Current medicinal chemistry, 2004, Volume: 11, Issue:3

    The first part of the present review describes the exciting journey of dopamine stabilizers, starting in the early eighties with the development of the partial dopamine agonist (-)-3-PPP of phenylpiperidine structure, via various compounds with aminotetraline structure with preferential autoreceptor antagonist properties, and then back again to phenylpiperidine compounds carrying substituents on the aromatic ring that transformed them from partial dopamine agonists to partial dopamine receptor antagonists, such as OSU6162. OSU6162 was brought to the clinic and has in preliminary trials showed antidyskinetic and antipsychotic efficacy. The second part of this review describes results from a hypoglutamatergia mouse model for cognitive symptoms of schizophrenia, where we have tested traditional neuroleptics, new generation antipsychotics with marked 5-HT2 vs dopamine D2 receptor blockade as well as a dopamine stabilizer belonging to the partial dopamine receptor antagonist category.

    Topics: Animals; Antipsychotic Agents; Aripiprazole; Disease Models, Animal; Dopamine; Dopamine Agonists; Dopamine Antagonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Mice; Piperazines; Piperidines; Quinolones; Schizophrenia

2004

Other Studies

5 other study(ies) available for osu-6162 and Disease-Models--Animal

ArticleYear
The monoamine stabilizer OSU6162 has anxiolytic-like properties and reduces voluntary alcohol intake in a genetic rat model of depression.
    Scientific reports, 2021, 06-04, Volume: 11, Issue:1

    Alcohol use disorders (AUD) often co-occur with anxiety and depressive disorders, and anxiety often drives relapse during alcohol abstinence. Optimal AUD pharmacotherapies may thus need to target both excessive alcohol intake and elevated anxiety. (-)-OSU6162 (OSU) is a monoamine stabilizer that attenuates alcohol-mediated behaviors in both preclinical and clinical settings. However, OSU's effect on anxiety-like behavior following long-term drinking remains unknown. To this end, we utilized a genetic rat model that exhibits increased anxiety- and depression-like behaviors (Flinders Sensitive Line; FSL) and their controls (Flinders Resistant Line; FRL). Using the novelty suppressed feeding (NSF) test, we evaluated anxiety-like behaviors (1) at baseline, (2) following long-term voluntary drinking and after 24 h of alcohol deprivation, and (3) following OSU administration in the same animals. At baseline, FSL animals displayed significantly elevated anxiety-like characteristics compared to FRL. Compared to alcohol-naïve animals, long-term drinking significantly reduced anxiety-like behaviors in FSL, without any significant effects in FRL animals. Compared to vehicle, OSU administration significantly reduced anxiety-like behaviors in alcohol-naïve FSL and long-term drinking FRL animals. While there was no significant difference in alcohol intake between FSL and FRL, OSU attenuated alcohol intake in both strains. Conclusively, in addition to the compound's previously identified ability to suppress alcohol-mediated behaviors, OSU may also possess anxiolytic properties, warranting further clinical evaluation in both AUD and anxiety disorder settings.

    Topics: Alcohol Abstinence; Alcohol Drinking; Alcoholism; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Depression; Disease Models, Animal; Ethanol; Male; Motor Activity; Movement; Piperidines; Rats

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
The monoaminergic stabilizer (-)-OSU6162 reverses delay-dependent natural forgetting and improves memory impairment induced by scopolamine in mice.
    Neuropharmacology, 2013, Volume: 75

    The aim of the present study was to evaluate the effect of the monoaminergic stabilizer (-)-OSU6162 on spatial recognition memory. Male NMRI mice were tested in the object location model which is based on the animals' inherent interest to examine changes in their environment: The animals' propensity to explore relocated objects in relation to unaltered objects, presented in two different sessions (sample and trial), was studied. In a first series of experiments the effect of (-)-OSU6162 on natural forgetting was evaluated. With an inter-session interval (ISI) of 30 min or an hour, untreated mice spent longer time exploring the displaced object, but when the time between sessions was as long as 6 h, the mice did not identify the displaced object. However, using the 6 h ISI design we found that (-)-OSU6162 in doses up to 30 μmol/kg, given directly after the sample session, caused an increased interest for the displaced object. Twenty-four hours after administration, (-)-OSU6162 was still effective in facilitating identification of the displaced object. We also evaluated the effect of (-)-OSU6162 on scopolamine-induced memory deficits in this model - the two agents were given 30 min before the sample session and the ISI was one hour. Under these conditions scopolamine induced a deficit in object location memory and this effect was counteracted by (-)-OSU6162. The data from the present study suggest that (-)-OSU6162 prolongs object location memory in normal mice and reverses scopolamine-induced memory deficits. (-)-OSU6162 might be a valuable drug candidate for memory deficits and other cognitive impairments.

    Topics: Animals; Discrimination, Psychological; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Memory Disorders; Mice; Motor Activity; Neuroprotective Agents; Piperidines; Scopolamine; Time Factors

2013
The monoamine stabilizer (-)-OSU6162 attenuates voluntary ethanol intake and ethanol-induced dopamine output in nucleus accumbens.
    Biological psychiatry, 2012, Nov-15, Volume: 72, Issue:10

    New medications for alcohol use disorder (AUD) are needed. Long-term alcohol consumption leads to a dysregulated dopamine system. A novel approach to normalize these dysregulations might be treatment with "monoamine stabilizers," a novel class of compounds characterized by the ability to either suppress, stimulate, or not influence dopamine activity depending on the prevailing dopaminergic tone.. The effects of the monoamine stabilizer (-)-OSU6162 (OSU6162) on voluntary ethanol intake and ethanol withdrawal symptoms were evaluated in rats voluntarily consuming ethanol for at least 3 months before testing. Furthermore, effects of OSU6162 on ethanol seeking behavior were evaluated with the progressive ratio and cue-induced reinstatement paradigms. Finally, the interaction of OSU6162 with ethanol on dopamine output and metabolism was studied with microdialysis.. The OSU6162 attenuated several ethanol-mediated behaviors, including voluntary ethanol consumption, ethanol withdrawal symptoms, operant ethanol self-administration under progressive ratio schedule, and cue-induced reinstatement of ethanol seeking in rats that had voluntarily consumed ethanol for at least 3 months before treatment. In addition, OSU6162 blunted ethanol-induced dopamine output in nucleus accumbens of ethanol-naïve rats.. These results highlight the ability of OSU6162 to stabilize dopamine activity depending on the prevailing dopaminergic tone and indicate that OSU6162 might decrease ethanol intake by attenuating the acute rewarding properties of ethanol. In addition, OSU6162 might have potential to prevent relapse triggered by alcohol craving, alcohol related cues, and or an urge to relieve abstinence symptoms. The present study is to our knowledge the first indicating that OSU6162 might serve as a novel medication for AUD.

    Topics: Alcohol Drinking; Animals; Behavioral Symptoms; Cues; Disease Models, Animal; Dopamine; Drug Discovery; Ethanol; Male; Microdialysis; Naltrexone; Narcotic Antagonists; Nucleus Accumbens; Piperidines; Rats; Reward; Secondary Prevention; Substance Withdrawal Syndrome

2012
Coadministration of (-)-OSU6162 with l-DOPA normalizes preproenkephalin mRNA expression in the sensorimotor striatum of primates with unilateral 6-OHDA lesions.
    Experimental neurology, 2001, Volume: 169, Issue:1

    The substituted phenylpiperidine (-)-OSU6162 is a novel modulator of the dopaminergic systems with low affinity for dopamine D(2) receptors and potent normalizing effects on l-DOPA-induced dyskinesias. We studied the effects of coadministration of (-)-OSU6162 with l-DOPA on the regulation of striatal preproenkephalin (PPE) and prodynorphin (PDyn) mRNA expression in the primate brain by in situ hybridization histochemistry. Common marmoset monkeys sustaining unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway received l-DOPA/carbidopa, l-DOPA/carbidopa plus (-)-OSU6162, or vehicle over 14 days. In vehicle-treated animals, PPE mRNA levels were markedly increased in the sensorimotor territory of the lesioned striatum. By contrast, a rather uniform lesion-induced reduction of PDyn mRNA levels was found in the vehicle group. Subchronic l-DOPA treatment induced a further increase in PPE mRNA expression in a number of sensorimotor and associative subregions of the denervated striatum. Coadministration of (-)-OSU6162 with l-DOPA partially reversed the lesion- and l-DOPA-induced elevation of PPE expression and, by affecting PPE mRNA expression differentially on the intact and lesioned striatum, markedly reduced the side-to-side difference in PPE mRNA expression. The effects on PPE mRNA expression were apparent throughout the rostrocaudal extent of the putamen and the dorsal portions of the caudate nucleus. l-DOPA treatment resulted in an enhancement in PDyn mRNA expression in all functional compartments of the striatum. Coadministration of (-)-OSU6162 had no apparent influence on these l-DOPA-induced changes in PDyn mRNA expression. The present results suggest that (-)-OSU6162 acts primarily by modifying striatal output via the indirect pathway.

    Topics: Animals; Autoradiography; Callithrix; Caudate Nucleus; Corpus Striatum; Disease Models, Animal; Dopamine Agents; Drug Administration Schedule; Drug Therapy, Combination; Enkephalins; Female; In Situ Hybridization; Injections, Subcutaneous; Levodopa; Ligands; Male; Oxidopamine; Parkinson Disease, Secondary; Piperidines; Protein Precursors; Putamen; RNA, Messenger; Tritium

2001