osteoprotegerin and Growth-Disorders

osteoprotegerin has been researched along with Growth-Disorders* in 2 studies

Other Studies

2 other study(ies) available for osteoprotegerin and Growth-Disorders

ArticleYear
Intestinal inflammation and impact on growth in children with cystic fibrosis.
    Journal of pediatric gastroenterology and nutrition, 2015, Volume: 60, Issue:4

    The aim of the study was to evaluate and compare faecal markers of intestinal inflammation in children with cystic fibrosis (CF), and determine whether intestinal inflammation adversely affects the nutritional phenotype.. Faecal samples for markers of intestinal inflammation, calprotectin, S100A12, and osteoprotegerin, were collected from children with CF, healthy controls (HCs), and Crohn disease (CD). Associations between inflammatory markers and clinical and nutritional indices were determined in subjects with CF.. Twenty-eight children with CF (mean [standard deviation (SD)] 8.4 [3.3] years old, 22 pancreatic insufficient [PI]), 47 HC, and 30 CD were recruited. Mean (SD) faecal calprotectin in CF (94.3 [100.6] mg/kg) was greater than HC (26.7 [15.4] mg/kg, P < 0.0001), but lower than CD (2133 [2781] mg/kg, P = 0.0003). Abnormal faecal calprotectin was found in subjects only with PI (17/22 (77%), P = 0.001). There was no difference in faecal mean (SD) S100A12 (0.8 [0.9] vs 1.5 [2.2] mg/kg, P = 0.14) and osteoprotegerin concentrations (72.7 [52.2] vs 62.5 [0.0] pg/mL, P = 0.2) between CF and HC. Patients with CD had significantly elevated S100A12 and osteoprotegerin compared with CF and HC. Faecal calprotectin inversely correlated with both weight (r = -0.5, P = 0.003) and height z scores (r = -0.6, P = 0.002) in CF.. The pattern of intestinal inflammation in CF is unique and distinct from inflammatory bowel disease, with elevated faecal calprotectin but normal faecal S100A12 and osteoprotegerin concentrations. The severity of intestinal inflammation, based on faecal calprotectin, significantly correlates with poor growth.

    Topics: Adolescent; Biomarkers; Child; Child, Preschool; Crohn Disease; Cystic Fibrosis; Enzyme-Linked Immunosorbent Assay; Exocrine Pancreatic Insufficiency; Feces; Female; Growth; Growth Disorders; Humans; Inflammation; Intestinal Mucosa; Leukocyte L1 Antigen Complex; Male; Osteoprotegerin; S100A12 Protein

2015
An experimental therapy to improve skeletal growth and prevent bone loss in a mouse model overexpressing IL-6.
    Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 2014, Volume: 25, Issue:2

    Premature osteoporosis and stunted growth are common complications of childhood chronic inflammatory disease. Presently, no treatment regimens are available for these defects in juvenile diseases. We identified the sequential Fc-OPG/hPTH treatment as an experimental therapy that improves the skeletal growth and prevents the bone loss in a mouse model overexpressing IL-6.. Premature osteoporosis and stunted growth are common complications of childhood chronic inflammatory diseases and have a significant impact on patients' quality of life. Presently, no treatment regimens are available for these defects in juvenile diseases. To test a new therapeutic approach, we used growing mice overexpressing the pro-inflammatory cytokine IL-6 (TG), which show a generalized bone loss and stunted growth.. Since TG mice present increased bone resorption and impaired bone formation, we tested a combined therapy with the antiresorptive modified osteoprotegerin, Fc-OPG, and the anabolic PTH. We injected TG mice with Fc-OPG once at the 4th day of life and with hPTH(1-34) everyday from the 16th to the 30th day of age.. A complete prevention of growth and bone defects was observed in treated mice due to normalization of osteoclast and osteoblast parameters. Re-establishment of normal bone turnover was confirmed by RT-PCR analysis and by in vitro experiments that revealed the full rescue of osteoclast and osteoblast functions. The phenotypic recovery of TG mice was due to the sequential treatment, because TG mice treated with Fc-OPG or hPTH alone showed an increase of body weight, tibia length, and bone volume to intermediate levels between those observed in vehicle-treated WT and TG mice.. Our results identified the sequential Fc-OPG/hPTH treatment as an experimental therapy that improves the skeletal growth and prevents the bone loss in IL-6 overexpressing mice, thus providing the proof of principle for a therapeutic approach to correct these defects in juvenile inflammatory diseases.

    Topics: Animals; Body Weight; Bone Density Conservation Agents; Cells, Cultured; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Therapy, Combination; Female; Growth Disorders; Interleukin-6; Male; Mice, Transgenic; Osteoclasts; Osteoporosis; Osteoprotegerin; Teriparatide; X-Ray Microtomography

2014