orlistat and Glioblastoma

orlistat has been researched along with Glioblastoma* in 1 studies

Other Studies

1 other study(ies) available for orlistat and Glioblastoma

ArticleYear
Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis.
    Journal of neuro-oncology, 2014, Volume: 118, Issue:2

    Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.

    Topics: 4-Butyrolactone; Apoptosis; Autophagy; Brain; Brain Neoplasms; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; Cerulenin; Dose-Response Relationship, Drug; Fatty Acid Synthase, Type I; Fatty Acid Synthesis Inhibitors; Glioblastoma; Glioma; Humans; Lactones; Neoplasm Grading; Orlistat; Tissue Culture Techniques

2014