orlistat and Carcinoma--Hepatocellular

orlistat has been researched along with Carcinoma--Hepatocellular* in 6 studies

Other Studies

6 other study(ies) available for orlistat and Carcinoma--Hepatocellular

ArticleYear
Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis.
    Journal of experimental & clinical cancer research : CR, 2023, Jan-06, Volume: 42, Issue:1

    Sorafenib resistance is a key impediment to successful treatment of patients with advanced hepatocellular carcinoma (HCC) and recent studies have reported reversal of drug resistance by targeting ferroptosis. The present study aimed to explore the association of fatty acid synthase (FASN) with sorafenib resistance via regulation of ferroptosis and provide a novel treatment strategy to overcome the sorafenib resistance of HCC patients.. Intracellular levels of lipid peroxides, glutathione, malondialdehyde, and Fe. Solute carrier family 7 member 11 (SLC7A11) was found to play an important role in mediating sorafenib resistance. The up-regulation of FASN antagonize of SLC7A11-mediated ferroptosis and thereby promoted sorafenib resistance. Mechanistically, FASN enhanced sorafenib-induced ferroptosis resistance by binding to hypoxia-inducible factor 1-alpha (HIF1α), promoting HIF1α nuclear translocation, inhibiting ubiquitination and proteasomal degradation of HIF1α, and subsequently enhancing transcription of SLC7A11. Orlistat, an inhibitor of FASN, with sorafenib had significant synergistic antitumor effects and reversed sorafenib resistance both in vitro and in vivo.. Targeting the FASN/HIF1α/SLC7A11 pathway resensitized HCC cells to sorafenib. The combination of orlistat and sorafenib had superior synergistic antitumor effects in sorafenib-resistant HCC cells.

    Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Drug Resistance, Neoplasm; Fatty Acid Synthases; Ferroptosis; Humans; Liver Neoplasms; Orlistat; Sorafenib

2023
Single-cell RNA-sequencing atlas reveals an FABP1-dependent immunosuppressive environment in hepatocellular carcinoma.
    Journal for immunotherapy of cancer, 2023, Nov-24, Volume: 11, Issue:11

    Single-cell RNA sequencing, also known as scRNA-seq, is a method profiling cell populations on an individual cell basis. It is particularly useful for more deeply understanding cell behavior in a complicated tumor microenvironment. Although several previous studies have examined scRNA-seq for hepatocellular carcinoma (HCC) tissues, no one has tested and analyzed HCC with different stages.. In this investigation, immune cells isolated from surrounding normal tissues and cancer tissues from 3 II-stage and 4 III-stage HCC cases were subjected to deep scRNA-seq. The analysis included 15 samples. We distinguished developmentally relevant trajectories, unique immune cell subtypes, and enriched pathways regarding differential genes. Western blot and co-immunoprecipitation were performed to demonstrate the interaction between fatty acid binding protein 1 (FABP1) and peroxisome proliferator-activated receptor gamma(PPARG). In vivo experiments were performed in a C57BL/6 mouse model of HCC established via subcutaneous injection.. FABP1 was discovered to be overexpressed in tumor-associated macrophages (TAMs) with III-stage HCC tissues compared with II-stage HCC tissues. This finding was fully supported by immunofluorescence detection in significant amounts of HCC human samples. FABP1 deficiency in TAMs inhibited HCC progression in vitro. Mechanistically, FABP1 interacted with PPARG/CD36 in TAMs to increase fatty acid oxidation in HCC. When compared with C57BL/6 mice of the wild type, tumors in FABP1-/- mice consistently showed attenuation. The FABP1-/- group's relative proportion of regulatory T cells and natural killer cells showed a downward trend, while dendritic cells, M1 macrophages, and B cells showed an upward trend, according to the results of mass cytometry. In further clinical translation, we found that orlistat significantly inhibited FABP1 activity, while the combination of anti-programmed cell death 1(PD-1) could synergistically treat HCC progression. Liposomes loaded with orlistat and connected with IR780 probe could further enhance the therapeutic effect of orlistat and visualize drug metabolism in vivo.. ScRNA-seq atlas revealed an FABP1-dependent immunosuppressive environment in HCC. Orlistat significantly inhibited FABP1 activity, while the combination of anti-PD-1 could synergistically treat HCC progression. This study identified new treatment targets and strategies for HCC progression, contributing to patients with advanced HCC from new perspectives.

    Topics: Animals; Carcinoma, Hepatocellular; Fatty Acid-Binding Proteins; Humans; Immunosuppressive Agents; Liver Neoplasms; Mice; Mice, Inbred C57BL; Orlistat; PPAR gamma; RNA; Tumor Microenvironment

2023
Sperm associated antigen 4 promotes SREBP1-mediated de novo lipogenesis via interaction with lamin A/C and contributes to tumor progression in hepatocellular carcinoma.
    Cancer letters, 2022, 06-28, Volume: 536

    Hepatocellular carcinoma (HCC) is a highly malignant tumor and its progression is associated with altered lipid metabolism in precancerous lesions, such as non-alcoholic fatty liver disease. Here, we identified sperm associated antigen 4 (SPAG4), and explored its oncogenic role in HCC progression. Database analysis and immunohistochemistry indicated increased level of SPAG4 in HCC tissues which was of prognostic value. Gain/loss-of-function experiments showed that SPAG4 exerted oncogenic roles in HCC growth both in vitro and in vivo. RNA sequencing revealed activation of a lipogenic state and SREBP1-mediated pathway following SPAG4 overexpression. Mechanistically, the N-terminal region of SPAG4 bound to lamin A/C, which increased SREBP1 expression, nuclear translocation, and transcriptional activity. Treatment with orlistat, a lipid synthesis inhibitor, reversed SPAG4-mediated oncogenic effects, and its efficacy varied with SPAG4 level. The effect of orlistat was further amplified when combined with sorafenib in tumor xenograft mouse models. Our study provides evidence that SPAG4 mediates HCC progression by affecting lipid metabolism. Administration of orlistat combined with sorafenib reverses SPAG4-mediated oncogenesis in HCC cells and ectopic xenograft tumors in mice, suggesting that this pathway represents a potential target for HCC treatment.

    Topics: Animals; Carcinogenesis; Carcinoma, Hepatocellular; Carrier Proteins; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Lamin Type A; Lipogenesis; Liver Neoplasms; Mice; Orlistat; Sorafenib; Sterol Regulatory Element Binding Protein 1

2022
Orlistat Displays Antitumor Activity and Enhances the Efficacy of Paclitaxel in Human Hepatoma Hep3B Cells.
    Chemical research in toxicology, 2019, 02-18, Volume: 32, Issue:2

    Orlistat has been proved to be an effective fatty acid synthase inhibitor that is able to inhibit the proliferation and induce apoptosis in many cancer cell types. However, the anticancer effects of orlistat on hepatocellular carcinoma are undefined. We found that orlistat inhibited cell growth and induced G0/G1 cell cycle arrest with increased cyclin D, cyclin E, and p21 expression in human hepatoma Hep3B cells. Furthermore, protein expression of cyclin A, cyclin B, Cdk1, Cdk2, and Cdk4 was reduced by orlistat. This study investigated the role of lipid metabolism on orlistat-induced human hepatoma Hep3B cell death. The decrease in the expression of key enzymes in fatty acid metabolism, including FASN, ACOT8, PPT1, FABP1, CPT1 and CPT2, was observed after orlistat treatment. We also demonstrated that peroxisomal activity was involved in the orlistat-induced Hep3B cell death. In this study, we established an in vitro model to investigate the effect of orlistat on lipid accumulation. We found that orlistat significantly inhibited the cellular lipid content when administered in fatty acid overload conditions in Hep3B cells. Combination treatment of orlistat and paclitaxel was able to induce a synergistic effect on growth inhibition and cell apoptosis in Hep3B cells. Our data suggested that orlistat displays antitumor activity and enhances the efficacy of paclitaxel in Hep3B cells.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Drug Synergism; G1 Phase Cell Cycle Checkpoints; Humans; Lipid Metabolism; Liver Neoplasms; Orlistat; Paclitaxel; Palmitoyl-CoA Hydrolase; Peroxisomes

2019
The skinny on fat.
    International journal of dental hygiene, 2010, Volume: 8, Issue:2

    Topics: Adipose Tissue, White; Anti-Obesity Agents; Carcinoma, Hepatocellular; Diabetes Mellitus, Type 2; Fatty Acids; Humans; KATP Channels; Lactones; Leukemia; Liver Neoplasms; Obesity; Orlistat; Periodontitis

2010
Hepatic lipase mediates an increase in selective uptake of high-density lipoprotein-associated cholesteryl esters by human Hep 3B hepatoma cells in culture.
    Atherosclerosis, 1998, Volume: 141, Issue:2

    Selective uptake of high-density lipoprotein- (HDL-) associated cholesteryl esters (CE), i.e. lipid uptake independent from particle uptake, delivers CE to the liver and steroidogenic tissues in vivo. In vitro, besides hepatocytes and steroidogenic cells many other cell types selectively take up HDL CE. Hepatic lipase (HL) stimulates the internalisation of apoprotein (apo) B-containing lipoproteins by hepatocytes independent from lipolysis. In this study the role of HL in the hepatic metabolism of apo A-I-containing lipoproteins, i.e. HDL, was investigated. HDL3 (d = 1.125-1.21 g/ml) was radiolabeled in its protein (125I) and in its CE moiety ([3H]cholesteryl oleyl ether, ([3H]CEt)). HL originated from tissue culture media of hepatoma cells and from post-heparin plasma. Human Hep 3B hepatoma cells incubated in medium containing radiolabeled HDL3. In the absence of HL, the rate of apparent HDL3 particle uptake according to the lipid tracer ([3H]CEt) was in most cases in approximately 10-fold excess on that due to the protein label (125I), indicating selective CE uptake from HDL3. Addition of HL to these incubations increased the cellular uptake of [3H]CEt and of 125I from HDL3 and quantitatively the most prominent effect was an up to approximately 2.5-fold stimulation of apparent selective CE uptake ([3H]CEt-125I). This increase in selective CE uptake was observed in the presence of tetrahydrolipstatin, an inhibitor of the catalytically active site of HL, suggesting that this HL effect is independent from lipolysis. HL binds to cell surface heparan sulfate proteoglycans. To explore the role of these molecules for the HL effect on selective CE uptake, hepatoma cells were depleted of proteoglycans or Chinese hamster ovary (CHO) cells deficient in proteoglycan synthesis were used. Proteoglycan-deficiency reduced the HL-mediated increase in selective uptake by more than 80%. To investigate if low-density lipoprotein (LDL) receptors or the LDL receptor-related protein (LRP) are involved in the HL effect on selective CE uptake, murine embryonic fibroblasts (MEF) were used which are deficient in these receptors; alternatively, monensin, an inhibitor of endocytosis was present in the medium of Hep 3B cells during the uptake assay for labeled HDL3. These experiments yielded no evidence for a role of LDL receptors or LRP in the HL-mediated increase in selective CE uptake. In summary, HL mediates an increase in HDL3 selective CE uptake by human Hep 3B hepatoma cells.

    Topics: Animals; Carcinoma, Hepatocellular; CHO Cells; Cholesterol Esters; Cricetinae; Enzyme Inhibitors; Fibroblasts; Heparan Sulfate Proteoglycans; Heparin Lyase; Humans; Lactones; Lipase; Lipoproteins, HDL; Lipoproteins, HDL3; Liver; Mice; Monensin; Orlistat; Receptors, LDL; Tumor Cells, Cultured

1998