orientin has been researched along with Hypersensitivity* in 2 studies
2 other study(ies) available for orientin and Hypersensitivity
Article | Year |
---|---|
Inhibitory effects of orientin in mast cell-mediated allergic inflammation.
Mast cells are immune effector cells mediating allergic inflammation by the secretion of inflammatory mediators such as histamine and pro-inflammatory cytokines. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. The objective of this study was to rule out the effectiveness of orientin in mast cell-mediated allergic inflammation.. In this study, in vitro effects of orientin were evaluated in RBL-2H3, mouse bone marrow-derived mast cells, rat peritoneal mast cells, and in vivo effects were evaluated by inducing passive cutaneous anaphylaxis (PCA) in Imprinting Control Region (ICR) mice.. Findings show that orientin suppressed the immunoglobulin E (IgE)-mediated mast cell degranulation by reducing intracellular calcium level in a concentration-dependent manner. Orientin suppressed the secretion of pro-inflammatory cytokines in mast cells. This inhibitory effects of orientin was through inhibition of FcεRI-mediated signaling proteins. In addition, oral administration of orientin suppressed the IgE-mediated PCA reactions in a dose-dependent manner, which was evidenced by reduced Evan's blue pigmentation and ear swelling.. Based on these findings, we suggest that orientin might have potential to alleviate allergic reaction and mast cell-mediated allergic disease. Topics: Animals; Anti-Allergic Agents; Anti-Inflammatory Agents; Cells, Cultured; Dose-Response Relationship, Drug; Flavonoids; Glucosides; Hypersensitivity; Inflammation Mediators; Male; Mast Cells; Mice; Mice, Inbred ICR; Rats; Rats, Sprague-Dawley | 2020 |
New inhibitors for expression of IgE receptor on human mast cell.
Exploration for inhibitors against expression of IgE receptor (Fc epsilonRI) on human mast cell, a significant trigger to acute and chronic allergic symptoms, disclosed epigallocatechin gallate (EGCG), epicatechin gallate, and gallocatechin gallate as active principles. Additionally, the anthocyanidin, delphinidin, and the flavone, tricetinidin, possessing a pyrogallol function were also revealed to suppress expression of Fc epsilonRI. Structure-activity relationship analysis among catechins, anthocyanidins, and flavones revealed the pyrogallol moiety to be crucial for biological potency. Furthermore, EGCG was clarified to reduce generation of gamma-chain subunit to suppress expression of Fc epsilonRI on human mast cells. Topics: Anthocyanins; Anti-Allergic Agents; Catechin; Cell Line; Flavones; Flavonoids; Gene Expression; Humans; Hypersensitivity; Mast Cells; Receptors, IgE | 2010 |