Page last updated: 2024-09-05

organophosphonates and Allodynia

organophosphonates has been researched along with Allodynia in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (25.00)29.6817
2010's3 (75.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Chen, Z; Doyle, T; Finley, A; Salvemini, D1
Chen, Z; Doyle, T; Obeid, LM; Salvemini, D1
Chi, XX; Li, C; Nicol, GD; Strong, JA; Xie, W; Zhang, JM1
da Fonseca Pacheco, CM; da Fonseca Pacheco, D; de Castro Perez, A; de Francischi, JN; Duarte, ID; Klein, A1

Other Studies

4 other study(ies) available for organophosphonates and Allodynia

ArticleYear
Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats.
    Pain, 2011, Volume: 152, Issue:3

    Topics: Acetophenones; Anilides; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Activation; Enzyme Inhibitors; Hyperalgesia; Lysophospholipids; Male; Metalloporphyrins; NG-Nitroarginine Methyl Ester; Organophosphonates; Oxadiazoles; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Lysosphingolipid; Sphingosine; Thiophenes; Time Factors

2011
Sphingosine-1-phosphate acting via the S1P₁ receptor is a downstream signaling pathway in ceramide-induced hyperalgesia.
    Neuroscience letters, 2011, Jul-15, Volume: 499, Issue:1

    Topics: Anilides; Animals; Ceramides; Hyperalgesia; Inflammation Mediators; Injections, Subcutaneous; Lysophospholipids; Male; Mice; Organophosphonates; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine

2011
Sphingosine 1-phosphate receptor 2 antagonist JTE-013 increases the excitability of sensory neurons independently of the receptor.
    Journal of neurophysiology, 2012, Volume: 108, Issue:5

    Topics: Action Potentials; Analysis of Variance; Anilides; Animals; Capsaicin; Cell Line, Tumor; Cell Movement; Dinoprostone; Dose-Response Relationship, Drug; Drug Interactions; Ganglia, Spinal; Guanosine Diphosphate; Hyperalgesia; Lysophospholipids; Male; Melanoma; Mice; Organophosphonates; Pain Threshold; Patch-Clamp Techniques; Pertussis Toxin; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Sensory Receptor Cells; Sensory System Agents; Sphingosine; Thionucleotides; Time Factors; Wound Healing

2012
The mu-opioid receptor agonist morphine, but not agonists at delta- or kappa-opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors.
    British journal of pharmacology, 2008, Volume: 154, Issue:5

    Topics: Amidohydrolases; Analgesics, Opioid; Animals; Arachidonic Acids; Benzamides; Benzomorphans; Cannabinoid Receptor Modulators; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Hyperalgesia; Indoles; Male; Morphine; Organophosphonates; Pain; Pain Measurement; Piperazines; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

2008