ono-ae-248 and Pain

ono-ae-248 has been researched along with Pain* in 2 studies

Other Studies

2 other study(ies) available for ono-ae-248 and Pain

ArticleYear
Changes in the effect of spinal prostaglandin E2 during inflammation: prostaglandin E (EP1-EP4) receptors in spinal nociceptive processing of input from the normal or inflamed knee joint.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2004, Jan-21, Volume: 24, Issue:3

    Inflammatory pain is caused by sensitization of peripheral and central nociceptive neurons. Prostaglandins substantially contribute to neuronal sensitization at both sites. Prostaglandin E2 (PGE2) applied to the spinal cord causes neuronal hyperexcitability similar to peripheral inflammation. Because PGE2 can act through EP1-EP4 receptors, we addressed the role of these receptors in the spinal cord on the development of spinal hyperexcitability. Recordings were made from nociceptive dorsal horn neurons with main input from the knee joint, and responses of the neurons to noxious and innocuous stimulation of the knee, ankle, and paw were studied after spinal application of recently developed specific EP1-EP4 receptor agonists. Under normal conditions, spinal application of agonists at EP1, EP2, and EP4 receptors induced spinal hyperexcitability similar to PGE2. Interestingly, the effect of spinal EP receptor activation changed during joint inflammation. When the knee joint had been inflamed 7-11 hr before the recordings, only activation of the EP1 receptor caused additional facilitation, whereas spinal application of EP2 and EP4 receptor agonists had no effect. Additionally, an EP3alpha receptor agonist reduced responses to mechanical stimulation. The latter also attenuated spinal hyperexcitability induced by spinal PGE2. In isolated DRG neurons, the EP3alpha agonist reduced the facilitatory effect of PGE2 on TTX-resistant sodium currents. Thus pronociceptive effects of spinal PGE2 can be limited, particularly under inflammatory conditions, through activation of an inhibitory splice variant of the EP3 receptor. The latter might be an interesting target for controlling spinal hyperexcitability in inflammatory pain states.

    Topics: Animals; Arthritis; Carrageenan; Cell Separation; Dinoprostone; Disease Models, Animal; Ganglia, Spinal; Kaolin; Knee Joint; Male; Neurons; Pain; Patch-Clamp Techniques; Physical Stimulation; Protein Isoforms; Rats; Rats, Wistar; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP3 Subtype; Spinal Cord

2004
Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice.
    British journal of pharmacology, 2001, Volume: 133, Issue:3

    Prostaglandin E2 (PGE2) is known to be the principal pro-inflammatory prostanoid and play an important role in nociception. To identify PGE receptor (EP) subtypes that mediate pain responses to noxious and innocuous stimuli, we studied them by use of EP1 and EP3 knockout (EP1(-/-) and EP3(-/-)) mice. PGE2 could induce mechanical allodynia in EP1(+/+), EP3(+/+) and EP3(-/-) mice, but not in EP1(-/-) mice. N-methyl-D-aspartate (NMDA), the substrate of nitric oxide (NO) synthase L-arginine, or the NO donor sodium nitroprusside administered intrathecal (i.t.) could induce allodynia in EP3(-/-) and EP1(-/-) mice. Activation of EP1 receptors appears to be upstream, rather than downstream, of NMDA receptor activation and NO production in the PGE2-induced allodynia. Although PGE2 produced thermal hyperalgesia over a wide range of dosages from 50 pg to 0.5 microg kg(-1) in EP3(+/+) mice, it showed a monophasic hyperalgesic action at 5 ng kg(-1) or higher doses in EP3(-/-) mice. The selective EP3 agonist, ONO-AE-248, induced hyperalgesia at 500 pg kg(-1) in EP3(+/+) mice, but not in EP3(-/-) mice. Saline-injected EP1(-/-) mice showed hyperalgesia, which was reversed by i.t. PGE2 in a dose-dependent manner. There was no significant difference in the formalin-induced behaviours between EP1(-/-) or EP3(-/-) mice and the cognate wild-type mice. These results demonstrate that spinal EP1 receptors are involved in the PGE2-induced allodynia and that spinal EP3 receptors are involved in the hyperalgesia induced by low doses of PGE2. However, the formalin-induced pain cannot be ascribed to a single EP receptor subtype EP1 or EP3.

    Topics: Animals; Arginine; Behavior, Animal; Dinoprostone; Formaldehyde; Gene Deletion; Hyperalgesia; Mice; Mice, Knockout; Nitric Oxide; Nitroprusside; Nitroso Compounds; Pain; Pain Measurement; Reaction Time; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP3 Subtype

2001