ono-8711 and Pain

ono-8711 has been researched along with Pain* in 4 studies

Other Studies

4 other study(ies) available for ono-8711 and Pain

ArticleYear
Endothelin-1 Elicits TRP-Mediated Pain in an Acid-Induced Oral Ulcer Model.
    Journal of dental research, 2018, Volume: 97, Issue:8

    Oral ulcer is the most common oral disease and leads to pain during meals and speaking, reducing the quality of life of patients. Recent evidence using animal models suggests that oral ulcers induce cyclooxygenase-dependent spontaneous pain and cyclooxygenase-independent mechanical allodynia. Endothelin-1 is upregulated in oral mucosal inflammation, although it has not been shown to induce pain in oral ulcers. In the present study, we investigated the involvement of endothelin-1 signaling with oral ulcer-induced pain using our proprietary assay system in conscious rats. Endothelin-1 was significantly upregulated in oral ulcers experimentally induced by topical acetic acid treatment, while endothelin-1 production was suppressed by antibacterial pretreatment. Spontaneous nociceptive behavior in oral ulcer model rats was inhibited by swab applications of BQ-788 (ET

    Topics: Acetanilides; Anilides; Animals; Bridged Bicyclo Compounds; Caproates; Cinnamates; Disease Models, Animal; Endothelin-1; Male; Oligopeptides; Oral Ulcer; Pain; Peptides, Cyclic; Piperidines; Purines; Rats; Rats, Wistar; Signal Transduction; Sulfonamides; TRPV Cation Channels

2018
Prostanoid-dependent spontaneous pain and PAR
    Molecular pain, 2017, Volume: 13

    During dental treatments, intraoral appliances frequently induce traumatic ulcers in the oral mucosa. Such mucosal injury-induced mucositis leads to severe pain, resulting in poor quality of life and decreased cooperation in the therapy. To elucidate mucosal pain mechanisms, we developed a new rat model of intraoral wire-induced mucositis and investigated pain mechanisms using our proprietary assay system for conscious rats. A thick metal wire was installed in the rats between the inferior incisors for one day. In the mucosa of the mandibular labial fornix region, which was touched with a free end of the wire, traumatic ulcer and submucosal abscess were induced on day 1. The ulcer was quickly cured until next day and abscess formation was gradually disappeared until five days. Spontaneous nociceptive behavior was induced on day 1 only, and mechanical allodynia persisted over day 3. Antibiotic pretreatment did not affect pain induction. Spontaneous nociceptive behavior was sensitive to indomethacin (cyclooxygenase inhibitor), ONO-8711 (prostanoid receptor EP1 antagonist), SB-366791, and HC-030031 (TRPV1 and TRPA1 antagonists, respectively). Prostaglandin E2 and 15-deoxyΔ12,14-prostaglandin J2 were upregulated only on day 1. In contrast, mechanical allodynia was sensitive to FSLLRY-NH2 (protease-activated receptor PAR2 antagonist) and RN-1734 (TRPV4 antagonist). Neutrophil elastase, which is known as a biased agonist for PAR2, was upregulated on days 1 to 2. These results suggest that prostanoids and PAR2 activation elicit TRPV1- and TRPA1-mediated spontaneous pain and TRPV4-mediated mechanical allodynia, respectively, independently of bacterial infection, following oral mucosal trauma. The pathophysiological pain mechanism suggests effective analgesic approaches for dental patients suffering from mucosal trauma-induced pain.

    Topics: Acetanilides; Animals; Bridged Bicyclo Compounds; Caproates; Hyperalgesia; Male; Pain; Prostaglandins; Purines; Rats, Wistar; Receptor, PAR-2; Sulfonamides; TRPA1 Cation Channel; TRPV Cation Channels

2017
Role of prostaglandin receptor subtype EP1 in prostaglandin E2-induced nociceptive transmission in the rat spinal dorsal horn.
    Brain research, 2004, Jun-04, Volume: 1010, Issue:1-2

    It has been indicated that prostaglandin E2 (PGE2) and the receptor for PGE2 (EP receptor) are key factors contributing to the facilitated generation of nociception. This study was designed to investigate the roles of PGE2 and EP1 receptors in the spinal cord in the nociceptive transmission, using behavioral and intracellular calcium ion concentration ([Ca2+]i) assays and in situ hybridization. Experiments were conducted on Sprague-Dawley rats. In behavioral assays, withdrawal thresholds to mechanical stimuli were evaluated using von Frey filament. The effect of an intrathecally administered selective EP1 antagonist, 6-[(2S,3S)-3-(4-chloro-2-methylphenylsulfonylaminomethyl)-bicyclo[2.2.2]octan-2-yl]-5Z-hexenoic acid (ONO-8711), on the intrathecal PGE2-induced hyperalgesia was examined. In [Ca2+]i assays, we measured [Ca2+]i in the dorsal horn of spinal cord slices and examined the effects of PGE2 and ONO-8711 perfusion on the [Ca2+]i changes. In situ hybridization using EP1 digoxigenin probe was performed on the slice sections of the lumbar spinal cord and bilateral L4 and L5 dorsal root ganglions (DRGs). Mechanical hyperalgesia was observed after intrathecal PGE2 administration. Intrathecal administration of ONO-8711 attenuated the PGE2-induced mechanical hyperalgesia in a dose- and time-dependent manner. Perfusion of ONO-8711 markedly suppressed PGE2-induced [Ca2+]i increment in laminae II-VI in dorsal horn of the spinal cord slice. Moreover, in situ hybridization revealed EP1 hybridization signals in the DRG neurons, but not in the spinal cord. The results of this study suggested that spinal PGE2 activates the EP1 receptors existing on the central terminals of primary afferents, subsequently increasing in [Ca2+]i in the spinal dorsal horn, which are involved in the mechanisms of spinal PGE2-induced nociceptive transmission.

    Topics: Afferent Pathways; Animals; Bridged Bicyclo Compounds; Calcium; Calcium Signaling; Caproates; Dinoprostone; Dose-Response Relationship, Drug; Ganglia, Spinal; Hyperalgesia; Injections, Spinal; Lumbar Vertebrae; Male; Nociceptors; Pain; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP1 Subtype; RNA, Messenger; Synaptic Transmission

2004
Role of prostaglandin receptor EP1 in the spinal dorsal horn in carrageenan-induced inflammatory pain.
    Anesthesiology, 2002, Volume: 97, Issue:5

    Prostaglandin E2 (PGE2) and the receptor for PGE2 (EP receptor) are key factors contributing to the generation of hyperalgesia caused by inflammation. The current study was designed to investigate the roles of PGE2 and EP1 receptors in the spinal cord in the development and maintenance of inflammatory pain, using behavioral, microdialysis, and intracellular calcium ion concentration ([Ca2+]i) assays.. Inflammation was induced by an injection of carrageenan into the plantar surface of the rat hind paw. The effects of inflammation were evaluated at the time points of 3 h (early phase) and 15 h (late phase) after carrageenan injection. In behavioral assays, withdrawal thresholds to mechanical stimuli were evaluated. The effect of an intrathecally administered selective EP1 antagonist, ONO-8711, on the carrageenan-induced hyperalgesia was examined. Using a spinal microdialysis method, PGE2 concentration in the spinal dorsal horn was measured. In [Ca2+]i assays, we measured [Ca2+]i in the spinal dorsal horn in transverse spinal slices and examined the effects of pretreatment with ONO-8711. Sensitivities of the changes in [Ca2+]i to PGE2 perfusion were also assessed.. Mechanical hyperalgesia and paw edema were observed in both the early and late phases. The hyperalgesia was inhibited by intrathecal ONO-8711 in the late, but not early, phase. The concentration of PGE2 in the spinal dorsal horn increased in the late phase. The [Ca2+]i in the dorsal horn increased on the ipsilateral side to the inflammation in the late, but not early phase. This increase was suppressed by the pretreatment with ONO-8711. Magnitude of the increase in [Ca2+]i on the ipsilateral side in response to PGE2 perfusion was greater in the late phase than in the early phase.. The results suggested that activation of spinal EP1 receptors was crucial in the carrageenan-induced mechanical hyperalgesia in the late phase. It seems that some of the mechanisms underlying inflammation-induced plastic changes are mediated by time-dependent increase in PGE2 concentration, activation of EP1 receptors, and increase in [Ca2+]i in the spinal dorsal horn.

    Topics: Animals; Bridged Bicyclo Compounds; Calcium; Caproates; Carrageenan; Dinoprostone; Inflammation; Male; Pain; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP1 Subtype

2002