ono-1301 and Myocardial-Infarction

ono-1301 has been researched along with Myocardial-Infarction* in 2 studies

Other Studies

2 other study(ies) available for ono-1301 and Myocardial-Infarction

ArticleYear
ONO-1301 enhances post-transplantation survival of human induced pluripotent stem cell-derived cardiac tissue sheet by promoting angiogenesis.
    The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2023, Volume: 42, Issue:6

    Transplanting human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) tissue sheets effectively treat ischemic cardiomyopathy. Cardiac functional recovery relies on graft survival in which angiogenesis played an important part. ONO-1301 is a synthetic prostacyclin analog with proangiogenic effects. We hypothesized that transplantation of hiPSC-CM tissue sheets with slow-release ONO-1301 scaffold could promote hostgraft angiogenesis, enhance tissue survival and therapeutic effect.. We developed hiPSC-CM tissue sheets with ONO-1301 slow-release scaffold and evaluated their morphology, gene expression, and effects on angiogenesis. Three tissue sheet layers were transplanted into a rat myocardial infarction (MI) model. Left ventricular ejection fraction, gene expression in the MI border zone, and angiogenesis effects were investigated 4 weeks after transplantation.. In vitro assessment confirmed the slow-release of ONO-1301, and its pro-angiogenesis effects. In addition, in vivo data demonstrated that ONO-1301 administration positively correlated with graft survival. Cardiac tissue as thick as ∼900 μm was retained in the ONO (+) treated group. Additionally, left ventricular ejection fraction of the ONO (+) group was significantly enhanced, compared to ONO (-) group. The ONO (+) group also showed significantly improved interstitial fibrosis, higher capillary density, increased number of mature blood vessels, along with an enhanced supply of oxygen, and nutrients.. Slow-release ONO-1301 scaffold provided an efficient delivery method for thick hiPSC-CM tissue. ONO-1301 promotes angiogenesis between the host and graft and improves nutritional and oxygen supply, thereby enhancing the survival of transplanted cells, effectively improving ejection fraction, and therapeutic effects.

    Topics: Angiogenesis Inducing Agents; Animals; Disease Models, Animal; Humans; Induced Pluripotent Stem Cells; Myocardial Infarction; Myocytes, Cardiac; Rats; Stroke Volume; Ventricular Function, Left

2023
Sustained-release delivery of prostacyclin analogue enhances bone marrow-cell recruitment and yields functional benefits for acute myocardial infarction in mice.
    PloS one, 2013, Volume: 8, Issue:7

    A prostacyclin analogue, ONO-1301, is reported to upregulate beneficial proteins, including stromal cell derived factor-1 (SDF-1). We hypothesized that the sustained-release delivery of ONO-1301 would enhance SDF-1 expression in the acute myocardial infarction (MI) heart and induce bone marrow cells (BMCs) to home to the myocardium, leading to improved cardiac function in mice.. ONO-1301 significantly upregulated SDF-1 secretion by fibroblasts. BMC migration was greater to ONO-1301-stimulated than unstimulated conditioned medium. This increase was diminished by treating the BMCs with a CXCR4-neutralizing antibody or CXCR4 antagonist (AMD3100). Atelocollagen sheets containing a sustained-release form of ONO-1301 (n = 33) or ONO-1301-free vehicle (n = 48) were implanted on the left ventricular (LV) anterior wall immediately after permanent left-anterior descending artery occlusion in C57BL6/N mice (male, 8-weeks-old). The SDF-1 expression in the infarct border zone was significantly elevated for 1 month in the ONO-1301-treated group. BMC accumulation in the infarcted hearts, detected by in vivo imaging after intravenous injection of labeled BMCs, was enhanced in the ONO-1301-treated hearts. This increase was inhibited by AMD3100. The accumulated BMCs differentiated into capillary structures. The survival rates and cardiac function were significantly improved in the ONO-1301-treated group (fractional area change 23±1%; n = 22) compared to the vehicle group (19±1%; n = 20; P = 0.004). LV anterior wall thinning, expansion of infarction, and fibrosis were lower in the ONO-1301-treated group.. Sustained-release delivery of ONO-1301 promoted BMC recruitment to the acute MI heart via SDF-1/CXCR4 signaling and restored cardiac performance, suggesting a novel mechanism for ONO-1301-mediated acute-MI heart repair.

    Topics: Animals; Bone Marrow Cells; Bone Marrow Transplantation; Cell Differentiation; Cell Movement; Chemokine CXCL12; Disease Models, Animal; Epoprostenol; Humans; Male; Mice; Myocardial Infarction; Myocardium; Pyridines; Receptors, CXCR4; Signal Transduction; Ventricular Remodeling

2013