omdm-2-cpd has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for omdm-2-cpd and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Activity-based anorexia in C57/BL6 mice: effects of the phytocannabinoid, Delta9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2.
The activity-based anorexia (ABA) paradigm is one of the few animal models of human anorexia nervosa. We present here the translation of this approach to C57/BL6 mice, a common background for genetically modified mice, and investigate the effects of the cannabinoid agonist, Delta(9)-tetrahydrocannabinol (THC) and the endocannabinoid uptake inhibitor, OMDM-2 in this model. The ABA paradigm was optimised so that food-restricted wheel-running mice displayed anorexia, reduced body weight and disrupted activity and circadian cycles. These conditions produced a murine ABA model with a defined stage and stability to allow for pharmacological intervention. Daily Delta(9)-THC (0.5 mg/kg) decreased survival in the ABA animals but increased feeding in the survivors, OMDM-2 (3 mg/kg) increased food intake, but not sufficiently to reverse weight loss. The effects of this model on endocannabinoid tone in the brain remain to be determined. Since the endocannabinoid system may be implicated in anorexia nervosa and in view of the positive modulation by cannabinoids of some aspects of ABA in this study, further investigation of the effects of cannabinoids in ABA is warranted. Topics: Animals; Anorexia Nervosa; Arachidonic Acids; Benzyl Compounds; Disease Models, Animal; Dronabinol; Energy Intake; Energy Metabolism; Feeding Behavior; Male; Mice; Mice, Inbred C57BL; Motor Activity; Physical Conditioning, Animal; Psychotropic Drugs; Weight Loss | 2010 |
Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis.
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). Cannabinoids have been shown to exert beneficial effects on animal models of MS and evidence suggests that the endocannabinoid system plays a role in the tonic control of spasticity. In this study we show that OMDM1 [(R)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine] and OMDM2 [(S)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine], two selective inhibitors of the putative endocannabinoid transporter and hence of endocannabinoid inactivation, provide an effective therapy for Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Treatment of TMEV-infected mice with OMDM1 and OMDM2 enhanced anandamide levels in the spinal cord and ameliorated motor symptoms. This was associated with a down-regulation of inflammatory responses in the spinal cord. In addition we show that OMDM1 and OMDM2 down-regulate macrophage function by (i) decreasing the surface expression of major histocompatibility complex (MHC) class II molecules, (ii) inhibiting nitric oxide synthase-2 (NOS-2) expression and (iii) reducing the production of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and interleukin-12 (IL-12p40). Taken together, these results point to the manipulation of the endocannabinoid system as a possible strategy to develop future MS therapeutic drugs. Topics: Animals; Arachidonic Acids; Benzyl Compounds; Cannabinoid Receptor Modulators; Cardiovirus Infections; Carrier Proteins; Cytokines; Disease Models, Animal; Endocannabinoids; Female; Histocompatibility Antigens Class II; Inflammation; Inflammation Mediators; Macrophages; Mice; Microglia; Motor Activity; Multiple Sclerosis; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Polyunsaturated Alkamides; Theilovirus; Up-Regulation | 2005 |