omdm-1-cpd and Disease-Models--Animal

omdm-1-cpd has been researched along with Disease-Models--Animal* in 1 studies

Other Studies

1 other study(ies) available for omdm-1-cpd and Disease-Models--Animal

ArticleYear
Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis.
    Journal of neurochemistry, 2005, Volume: 92, Issue:6

    Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). Cannabinoids have been shown to exert beneficial effects on animal models of MS and evidence suggests that the endocannabinoid system plays a role in the tonic control of spasticity. In this study we show that OMDM1 [(R)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine] and OMDM2 [(S)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine], two selective inhibitors of the putative endocannabinoid transporter and hence of endocannabinoid inactivation, provide an effective therapy for Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Treatment of TMEV-infected mice with OMDM1 and OMDM2 enhanced anandamide levels in the spinal cord and ameliorated motor symptoms. This was associated with a down-regulation of inflammatory responses in the spinal cord. In addition we show that OMDM1 and OMDM2 down-regulate macrophage function by (i) decreasing the surface expression of major histocompatibility complex (MHC) class II molecules, (ii) inhibiting nitric oxide synthase-2 (NOS-2) expression and (iii) reducing the production of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and interleukin-12 (IL-12p40). Taken together, these results point to the manipulation of the endocannabinoid system as a possible strategy to develop future MS therapeutic drugs.

    Topics: Animals; Arachidonic Acids; Benzyl Compounds; Cannabinoid Receptor Modulators; Cardiovirus Infections; Carrier Proteins; Cytokines; Disease Models, Animal; Endocannabinoids; Female; Histocompatibility Antigens Class II; Inflammation; Inflammation Mediators; Macrophages; Mice; Microglia; Motor Activity; Multiple Sclerosis; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Polyunsaturated Alkamides; Theilovirus; Up-Regulation

2005