oligomycins has been researched along with Hypoglycemia* in 2 studies
2 other study(ies) available for oligomycins and Hypoglycemia
Article | Year |
---|---|
Glucose modulates rat substantia nigra GABA release in vivo via ATP-sensitive potassium channels.
Glucose modulates beta cell insulin secretion via effects on ATP-sensitive potassium (KATP) channels. To test the hypothesis that glucose exerts a similar effect on neuronal function, local glucose availability was varied in awake rats using microdialysis in the substantia nigra, the brain region with the highest density of KATP channels. 10 mM glucose perfusion increased GABA release by 111 +/- 42%, whereas the sulfonylurea, glipizide, increased GABA release by 84 +/- 20%. In contrast, perfusion of the KATP channel activator, lemakalim, or depletion of ATP by perfusion of 2-deoxyglucose with oligomycin inhibited GABA release by 44 +/- 8 and 45 +/- 11%, respectively. Moreover, the inhibition of GABA release by 2-deoxyglucose and oligomycin was blocked by glipizide. During systemic insulin-induced hypoglycemia (1.8 +/- 0.3 mM), nigral dialysate GABA concentrations decreased by 49 +/- 4% whereas levels of dopamine in striatal dialysates increased by 119 +/- 18%. We conclude that both local and systemic glucose availability influences nigral GABA release via an effect on KATP channels and that inhibition of GABA release may in part mediate the hyperexcitability associated with hypoglycemia. These data support the hypothesis that glucose acts as a signaling molecule, and not simply as an energy-yielding fuel, for neurons. Topics: Adenosine Triphosphate; Analysis of Variance; Animals; Deoxyglucose; gamma-Aminobutyric Acid; Glipizide; Glucose; Hypoglycemia; Insulin; Male; Microdialysis; Neurons; Oligomycins; Potassium Channels; Rats; Rats, Sprague-Dawley; Substantia Nigra | 1995 |
Evaluation of the neuroprotective action of WEB 1881 FU on hypoglycemia/hypoxia-induced neuronal damage using rat striatal slices.
Effect of WEB 1881 FU on hypoglycemia/hypoxia-induced brain damage in rats was evaluated and compared to findings obtained with idebenone. We used an in vitro model that facilitated the direct monitoring of dopamine release from striatal slices. The response to high K+ stimulation under perfusion of the slices with D-glucose-free Ringer solution (hypoglycemia) decreased at 40 min, and then practically disappeared. WEB 1881 FU at 10(-6) M or idebenone at 10(-6) M significantly protected against impairment of the striatal responses under the conditions of hypoglycemia. Hypoglycemic injury, evidenced by a remarkable neuron loss, necrosis and spongyosis was also ameliorated by these drugs. WEB 1881 FU at 10(-6) M had a protective action against the impairment of striatal responses evoked by NaCN (electron transport inhibitor at site 3) and oligomycin (inhibitor of mitochondrial ATP synthesis), but idebenone at 10(-6) M did not. In light of these observations, the possibility that WEB 1881 FU and idebenone exert neuroprotective actions against hypoglycemic/hypoxic brain injury by activating energy metabolism with different mechanisms from each other has to be considered. Topics: Animals; Benzoquinones; Brain Diseases; Corpus Striatum; Cyanides; Dopamine; Hypoglycemia; Hypoxia; In Vitro Techniques; Male; Neurons; Oligomycins; Parasympatholytics; Potassium; Pyrrolidinones; Quinones; Rats; Rats, Inbred Strains; Ubiquinone | 1990 |