oligomycins has been researched along with Hyperthyroidism* in 5 studies
5 other study(ies) available for oligomycins and Hyperthyroidism
Article | Year |
---|---|
On the thyroid hormone-induced increase in respiratory capacity of isolated rat hepatocytes.
The respiratory capacities of hepatocytes, derived from hypothyroid, euthyroid and hyperthyroid rats, have been compared by measuring rates of oxygen uptake and by titrating components of the respiratory chain with specific inhibitors. Thyroid hormone increased the maximal rate of substrate-stimulated respiration and also increased the degree of ionophore-stimulated oxygen uptake. In titration experiments, similar concentrations of oligomycin or antimycin were required for maximal inhibition of respiration regardless of thyroid state, suggesting that the changes in respiratory capacity were not the result of variation in the amounts of ATP synthase or cytochrome b. However, less rotenone was required for maximal inhibition of respiration in the hypothyroid state than in cells from euthyroid or hyperthyroid rats, implying that hepatocytes from hypothyroid animals contain less NADH dehydrogenase. The concentration of carboxyatractyloside necessary for maximal inhibition of respiration was 100 microM in hepatocytes from hypothyroid rats, but 200 microM and 300 microM in hepatocytes from euthyroid and hyperthyroid rats, respectively, indicating a possible correlation between levels of thyroid hormone and the amount or activity of adenine nucleotide translocase. The increased capacity for coupled respiration in response to thyroid hormone is not associated with an increase in the components of the electron transport chain or ATP synthase, but correlates with an increased activity of adenine nucleotide translocase. Topics: Animals; Antimycin A; Atractyloside; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cells, Cultured; Hyperthyroidism; Hypothyroidism; Kinetics; Liver; Male; Oligomycins; Oxygen Consumption; Rats; Rats, Inbred Strains; Reference Values; Rotenone; Thyroid Gland; Triiodothyronine | 1991 |
Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status.
We have determined the relationship between rate of respiration and protonmotive force in oligomycin-inhibited liver mitochondria isolated from euthyroid, hypothyroid and hyperthyroid rats. Respiration rate was titrated with the respiratory-chain inhibitor malonate. At any given respiration rate mitochondria isolated from hypothyroid rats had a protonmotive force greater than mitochondria isolated from euthyroid controls, and mitochondria isolated from hyperthyroid rats had a protonmotive force less than mitochondria isolated from euthyroid controls. In the absence of malonate mitochondrial respiration rate increased in the order hypothyroid less than euthyroid less than hyperthyroid, while protonmotive force increased in the order hyperthyroid less than euthyroid less than hypothyroid. These findings are consistent with a thyroid-hormone-induced increase in the proton conductance of the inner mitochondrial membrane or a decrease in the H+/O ratio of the respiratory chain at any given protonmotive force. Thus the altered proton conductance or H+/O ratio of mitochondria isolated from rats of different thyroid hormone status controls the respiration rate required to balance the backflow of protons across the inner mitochondrial membrane. We discuss the possible relevance of these findings to the control of state 3 and state 4 respiration by thyroid hormone. Topics: Animals; Hyperthyroidism; Hypothyroidism; Male; Malonates; Membrane Potentials; Mitochondria, Liver; Oligomycins; Oxygen Consumption; Phosphorylation; Protons; Rats; Rats, Inbred Strains; Thyroid Hormones | 1988 |
Effect of thyroid state on cytosolic free calcium in resting and electrically stimulated cardiac myocytes.
The effects of the thyroid state on the cytosolic free Ca2+ concentration, [Ca2+]i, of resting and K+-depolarized cardiomyocytes were studied using the fluorescent Ca2+ indicator fura2. The mean resting [Ca2+]i in euthyroid myocytes (89 +/- 8 nM) was not significantly different from that in hyperthyroid myocytes (100 +/- 14 nM). The resting O2-consumption rate was identical for both groups when expressed per mg protein, but a 35% higher value was observed in the hyperthyroid group when expressed per cell on account of the cellular hypertrophy induced by thyroid hormone. Potassium induced depolarization (50 mM [K+]0) raised the level of [Ca2+]i by 50% in both groups. When ATP-coupled respiration was blocked with oligomycin, the 50 mM K+-induced rise in [Ca2+]i was accompanied in both groups by a 40% rise in glycolytic activity as inferred from measurement of lactate production. Ca2+-fluorescence transients were recorded from electrically stimulated myocytes of euthyroid, hyperthyroid and hypothyroid rats. The time taken to reach peak fluorescence (TPL) and that to 50% decay of peak fluorescence (RL0.5) decreased in the direction hypothyroid----hyperthyroid, indicating an increase in Ca2+ fluxes in the same direction. Isoproterenol (1 microM) enhanced the peak Ca2+ fluorescence in electrically stimulated hypothyroid and euthyroid myocytes but not in hyperthyroid myocytes. Both the TPL and RL0.5 were decreased by isoproterenol in euthyroid, but more so in hypothyroid myocytes. None of these parameters were influenced by isoproterenol in the hyperthyroid group. We conclude that (1) thyroid hormone increases neither the O2-consumption rate nor the level of [Ca2+]i of resting cardiomyocytes and (2) the effects of the beta-receptor-agonist isoproterenol on Ca2+ transients of electrically stimulated myocytes, are inversely related to the documented changes in beta-receptor density in heart tissue occurring with alterations in the thyroid state. Topics: Animals; Calcium; Cytosol; Electric Stimulation; Hyperthyroidism; Hypothyroidism; Isoproterenol; Male; Microscopy, Fluorescence; Myocardial Contraction; Myocardium; Oligomycins; Oxygen Consumption; Rats | 1988 |
Rapid and direct stimulation of hepatic gluconeogenesis by L-triiodothyronine (T3) in the isolated-perfused rat liver.
Topics: Adenine Nucleotides; Amino Acids; Animals; Biological Transport; Cyclic AMP; Dinitrophenols; Gluconeogenesis; Hyperthyroidism; Hypothyroidism; In Vitro Techniques; Kinetics; Liver; Male; Oligomycins; Oxygen Consumption; Perfusion; Rats; Triiodothyronine | 1980 |
Evidence for uncoupled respiration in thyrotoxic and epinephrine-stimulated myocardium.
Topics: Animals; Epinephrine; Heart; Hyperthyroidism; In Vitro Techniques; Male; Mitochondria, Muscle; Myocardium; Oligomycins; Oxygen Consumption; Perfusion; Phosphates; Phosphorus Isotopes; Potassium; Rats; Respiration; Triiodothyronine | 1968 |