oligomycins has been researched along with Brain-Ischemia* in 7 studies
7 other study(ies) available for oligomycins and Brain-Ischemia
Article | Year |
---|---|
Synthesis, antioxidant properties and neuroprotection of α-phenyl-tert-butylnitrone derived HomoBisNitrones in in vitro and in vivo ischemia models.
We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs 1-9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs 1-9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1'Z)-1,1'-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC Topics: Animals; Apoptosis; Brain Ischemia; Cell Line, Tumor; Cyclic N-Oxides; Disease Models, Animal; Drug Evaluation, Preclinical; Free Radical Scavengers; Glucose; Infarction, Middle Cerebral Artery; Lipid Peroxidation; Lipoxygenase Inhibitors; Male; Mice; Mice, Inbred C57BL; Molecular Structure; Neuroblastoma; Neurons; Neuroprotection; Neuroprotective Agents; Nitrogen Oxides; Oligomycins; Oxygen; Rotenone | 2020 |
Neuroprotective effects of E-PodoFavalin-15999 (Atremorine®).
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Brain Ischemia; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Hippocampus; Humans; Inflammation; Lipopolysaccharides; Mice; Microglia; Neuroprotective Agents; Oligomycins; Oxidative Stress; Oxidopamine; Parkinsonian Disorders; Plant Preparations; Rats; Rotenone; Tissue Culture Techniques | 2017 |
PP2A ligand ITH12246 protects against memory impairment and focal cerebral ischemia in mice.
ITH12246 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) is a 1,8-naphthyridine described to feature an interesting neuroprotective profile in in vitro models of Alzheimer's disease. These effects were proposed to be due in part to a regulatory action on protein phosphatase 2A inhibition, as it prevented binding of its inhibitor okadaic acid. We decided to investigate the pharmacological properties of ITH12246, evaluating its ability to counteract the memory impairment evoked by scopolamine, a muscarinic antagonist described to promote memory loss, as well as to reduce the infarct volume in mice suffering phototrombosis. Prior to conducting these experiments, we confirmed its in vitro neuroprotective activity against both oxidative stress and Ca(2+) overload-derived excitotoxicity, using SH-SY5Y neuroblastoma cells and rat hippocampal slices. Using a predictive model of blood-brain barrier crossing, it seems that the passage of ITH12246 is not hindered. Its potential hepatotoxicity was observed only at very high concentrations, from 0.1 mM. ITH12246, at the concentration of 10 mg/kg i.p., was able to improve the memory index of mice treated with scopolamine, from 0.22 to 0.35, in a similar fashion to the well-known Alzheimer's disease drug galantamine 2.5 mg/kg. On the other hand, ITH12246, at the concentration of 2.5 mg/kg, reduced the phototrombosis-triggered infarct volume by 67%. In the same experimental conditions, 15 mg/kg melatonin, used as control standard, reduced the infarct volume by 30%. All of these findings allow us to consider ITH12246 as a new potential drug for the treatment of neurodegenerative diseases, which would act as a multifactorial neuroprotectant. Topics: Animals; Blood-Brain Barrier; Brain Ischemia; Calcium Signaling; Cell Line; Cerebral Infarction; Chemical and Drug Induced Liver Injury; Disease Models, Animal; Drug Evaluation, Preclinical; Hippocampus; Memory Disorders; Mice; Molecular Structure; Molecular Targeted Therapy; Naphthyridines; Nerve Tissue Proteins; Neuroprotective Agents; Oligomycins; Oxidative Stress; Phosphorylation; Protein Phosphatase 2; Protein Processing, Post-Translational; Rats; Rotenone; Scopolamine; tau Proteins | 2013 |
Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions.
The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities. Topics: Adenine Nucleotides; Astrocytoma; Brain Ischemia; Cell Line, Tumor; Culture Media; Humans; Oligomycins; Purine Nucleosides; Pyrimidine Nucleosides | 2007 |
Astrocytes and neurons: different roles in regulating adenosine levels.
Adenosine is an endogenous nucleoside that signals through G-protein coupled receptors. Extracellular adenosine is required for receptor activation and two pathways have been identified for formation and cellular release of adenosine. The CLASSICAL pathway relies on intracellular formation of adenosine from adenine nucleotides and cellular efflux of adenosine via equilibrative nucleoside transporters (ENTs). The ALTERNATE pathway involves cellular release of adenine nucleotides, hydrolysis via ecto-5'-nucleotidases and extracellular formation of adenosine.. A rat model of cerebral ischemia and primary cultures of rat forebrain astrocytes and neurons were used.. Using a rat model of cerebral ischemia, the ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside (NBMPR) significantly increased post-ischemic forebrain adenosine levels and significantly decreased hippocampal neuron injury relative to saline-treatment. NBMPR-induced increases in adenosine receptor activation were not detected, suggesting that altering the intracellular:extracellular distribution of adenosine can affect ischemic outcome. Using primary cultures of rat forebrain astrocytes and neurons, adenosine release was evoked by ischemic-like conditions. Dipyridamole, an inhibitor of ENTs, was more effective at inhibiting adenosine release from neurons than from astrocytes. In contrast, alpha , beta-methylene ADP, an inhibitor of ecto-5'-nucleotidase, was effective at inhibiting adenosine release from astrocytes, but not from neurons. Thus, during ischemic-like conditions, neurons released adenosine via the CLASSICAL pathway, while astrocytes released adenosine via the ALTERNATE pathway.. These cell type differences in pathways for adenosine formation during ischemia may allow transport inhibitors to block simultaneously adenosine release from neurons and adenosine uptake into astrocytes. In principle, this could improve neuronal ATP levels without decreasing adenosine receptor activation. Topics: Adenosine; Affinity Labels; Animals; Astrocytes; Brain Ischemia; Cells, Cultured; Deoxyglucose; Dipyridamole; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Glucose; Hypoxia; Inosine; Models, Biological; Neurons; Oligomycins; Phosphodiesterase Inhibitors; Prosencephalon; Purines; Rats; Thioinosine; Tritium | 2005 |
Mitochondria consume energy and compromise cellular membrane potential by reversing ATP synthetase activity during focal ischemia in rats.
The direction of the chemical reaction of ATP synthetase is reversible. The present study was designed to determine whether mitochondria produce or consume ATP during ischemia. For this purpose, changes in mitochondrial membrane potential were measured in vivo at the site of a direct current (DC) electrode using a potentiometric dye, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and a rat model of focal ischemia. Two microL of dye (control group) or dye with oligomycin, an ATP synthetase inhibitor (oligomycin group), was injected into the parietotemporal cortex through the DC electrode. With the initiation of ischemia, a decrease in mitochondrial potential was observed within 20 seconds in the oligomycin group (earlier than the onset of DC deflection, P = 0.02). In contrast, in the control group, mitochondrial potential was maintained at 91 +/- 5% of the preischemia level for 118 +/- 38 seconds before showing full depolarization simultaneously with DC deflection. During the period of ischemia, the mitochondrial potential was higher in the control group (66 +/- 9%) than in the oligomycin group (46 +/- 8%, P = 0.0002), whereas DC potential was lower in the control group (-18 +/- 3) than in the oligomycin group (-15 +/- 2 mV, P = 0.04). These observations suggest that mitochondria consume ATP during ischemia by reversing ATP synthetase activity, which compromises cellular membrane potential by consuming ATP. Topics: Adenosine Triphosphate; Animals; Benzimidazoles; Brain Ischemia; Carbocyanines; Cerebral Cortex; Enzyme Inhibitors; Fluorescent Dyes; Hemoglobins; Membrane Potentials; Microinjections; Mitochondria; Mitochondrial Proton-Translocating ATPases; Oligomycins; Rats; Rats, Sprague-Dawley | 2004 |
Na+/Ca2+ exchanger in Na+ efflux-Ca2+ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia.
Topics: Adenosine Triphosphate; Amino Acid Sequence; Bepridil; Biological Transport; Brain Ischemia; Calcium; Deoxyglucose; Glioma; Glycolysis; Glycosylation; Humans; Hypoxia, Brain; L-Lactate Dehydrogenase; Models, Neurological; Molecular Sequence Data; Neuroprotective Agents; Oligomycins; Peptides; Phosphorylation; Sodium; Sodium-Calcium Exchanger; Tumor Cells, Cultured | 2002 |