oligomycins and Arthritis--Rheumatoid

oligomycins has been researched along with Arthritis--Rheumatoid* in 2 studies

Other Studies

2 other study(ies) available for oligomycins and Arthritis--Rheumatoid

ArticleYear
Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes.
    Rheumatology (Oxford, England), 2014, Volume: 53, Issue:7

    In RA, synoviocytes cause increased oxidative stress, leading to mitochondrial alterations that may participate in the pathogenesis of RA. Here we investigated whether mitochondrial dysfunction induces inflammatory responses in cultured normal human synoviocytes, a hallmark of RA.. Mitochondrial dysfunction was induced with the inhibitor oligomycin. The effects of mitochondrial dysfunction on cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and IL-8 expression; cellular and mitochondrial reactive oxygen species (ROS) production; nuclear factor-κB (NF-κB) activation and p65 translocation were studied. ROS scavengers (N-acetylcysteine and mitoTEMPO) and an NF-κB inhibitor (BAY-117085) were used to investigate the pathways involved. The natural anti-inflammatory antioxidant resveratrol was also tested.. Mitochondrial dysfunction per se significantly stimulated mitochondrial ROS production as well as low-grade expressions of COX-2, PGE2 and IL-8. Interestingly, mitochondrial dysfunction induced by pretreatment of synoviocytes with oligomycin synergized with IL-1β to increase the expression of these inflammatory mediators. The inflammatory effects of mitochondrial damage appeared to be dependent on ROS production and NF-κB activation since the inflammatory response was counteracted by both N-acetylcysteine and mitoTEMPO and it was also reduced by BAY-117085. Antimycin A and paraquat (inhibitors of mitochondrial function) also induced inflammatory responses. Furthermore, resveratrol significantly reduced the inflammatory response by decreasing ROS production and NF-κB activation.. These data suggest that mitochondrial dysfunction could induce an inflammatory response in normal human synoviocytes and sensitize these cells, causing a significant amplification of the inflammatory response induced by IL-1β. Resveratrol may represent a promising strategy in controlling the synovial inflammatory response.

    Topics: Aged; Arthritis, Rheumatoid; Cells, Cultured; Cyclooxygenase 2; Dinoprostone; Enzyme Inhibitors; Humans; Inflammation; Interleukin-1beta; Interleukin-8; Middle Aged; Mitochondria; NF-kappa B; Oligomycins; Oxidative Stress; Reactive Oxygen Species; Resveratrol; Stilbenes; Synovial Membrane

2014
Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma.
    Free radical research, 1996, Volume: 25, Issue:2

    Mitochondrial dysfunction contributes to cell damage in a number of human diseases. One significant mechanism by which mitochondria damage cells is by producing reactive oxygen species from the respiratory chain. In this study we measured the production of reactive oxygen species by leukocyte mitochondria in blood from rheumatoid arthritis patients. To do this we used the chemiluminescence of lucigenin, which is accumulated by mitochondria within cells and reacts with superoxide to form a chemiluminescent product. By using specific inhibitors we could distinguish between the production of reactive oxygen species by mitochondria and by NADPH oxidase. There was a five-fold increase in mitochondrial reactive oxygen species production in whole blood and monocytes from patients with rheumatoid arthritis, when compared to healthy subjects or patients with non-rheumatic diseases. There was no increases in mitochondrial reactive oxygen species production by neutrophils from rheumatoid arthritis patients. The enhanced mitochondrial radical production in rheumatoid arthritis patients correlated significantly with increased levels of tumor necrosis factor alpha in plasma (p < 0.0001). As tumor necrosis factor alpha is known to increase mitochondrial reactive oxygen species production the elevated mitochondrial radical formation seen in rheumatoid arthritis patients may be due to activation of the mitochondrial radical production. These data suggest that elevated mitochondrial oxidative stress contributes to the pathology of rheumatoid arthritis.

    Topics: Acridines; Antimycin A; Arthritis, Rheumatoid; Free Radicals; Humans; Leukocytes; Luminescent Measurements; Mitochondria; Monocytes; NADPH Oxidases; Neutrophils; Oligomycins; Oxidative Stress; Potassium Cyanide; Reactive Oxygen Species; Rotenone; Tumor Necrosis Factor-alpha; Uncoupling Agents

1996