oligomycins has been researched along with Adenocarcinoma* in 4 studies
4 other study(ies) available for oligomycins and Adenocarcinoma
Article | Year |
---|---|
Mechanisms and kinetics of alpha-linolenic acid uptake in Caco-2 clone TC7.
The uptake kinetics of alpha-linolenic acid (18:3(n - 3)), an essential fatty acid, were investigated in the human intestinal cell line Caco-2. Four clones (PD10, PF11, PD7 and TC7) from the heterogeneous parental Caco-2 cells population were used. After a screening step using isolated cells, the TC7 clone was selected for the study of alpha-linolenic acid uptake. [1-(14)C]linolenic acid dissolved in 10 mM taurocholate was presented to the microvillus plasma membrane (apical side) of TC7 differentiated cells, grown on a semi-permeable polycarbonate membrane. The results show that the initial rate of uptake is not a linear function of the 18:3(n- 3) monomer concentration in the incubation medium. In the monomer concentration range studied (0.2 to 36 microM) apical uptake was saturable and followed Michaelis-Menten kinetics (V(max) = 15.4 +/- 0.6 nmol/mg protein per min, K(m) = 14.3 +/- 1.3 microM). In addition, it was temperature- and energy-dependent but was apparently unaffected by the sodium gradient and intracellular metabolic fate of 18:3(n - 3). Excess of unlabeled saturated or unsaturated long chain fatty acids (C16 to C22) led to a 27-68% reduction of [1-(14)C]linolenic acid uptake. Likewise basolateral uptake was saturable (V(max) = 4.9 +/- 0.7 nmol/mg protein per min, K(m) = 8.7 +/- 2.9 microM). These facts argue in favour of the existence in these human intestinal cells of a carrier-mediated transport system for alpha-linolenic acid and probably other long chain fatty acids as well. Topics: Adenocarcinoma; alpha-Linolenic Acid; Antimetabolites; Caco-2 Cells; Carbon Radioisotopes; Cell Division; Clone Cells; Colonic Neoplasms; Deoxyglucose; Enzyme Inhibitors; Fatty Acids; Glucose; Humans; Intestinal Mucosa; Intestines; Ionophores; Kinetics; Lipids; Monensin; Oligomycins; Osmolar Concentration; Serine Endopeptidases; Substrate Specificity; Temperature; Time Factors | 1997 |
Sphingosine-induced inhibition of capacitative calcium influx in CFPAC-1 cells.
Sphingosine (10 microM) induced mobilization of intracellular Ca2+ stores in the pancreatic duct adenocarcinoma cell line CFPAC-1. The effect was specific for sphingosine, since the sphingosine analog C2-ceramide had no effect. Sphingosine did not cause Ca2+ entry from extracellular medium, as also shown by following Mn2+ quenching of Fura-2 fluorescence. Furthermore, sphingosine, similarly to the mitochondrial inhibitors rotenone and oligomycin, strongly inhibited the rate of Mn2+ entry triggered by both thapsigargin- and agonist-induced depletion of intracellular stores. The uptake of rhodamine 123, a lipophilic cation which estimates mitochondrial energy level, was reduced by sphingosine to an extent similar to that observed in the presence of mitochondrial inhibitors. It is suggested that impairment of mitochondrial function might be responsible for inhibition of capacitative Ca2+ entry caused by sphingosine. Topics: Adenocarcinoma; Biological Transport; Calcium; Enzyme Inhibitors; Fluorescent Dyes; Fura-2; Humans; Manganese; Membrane Potentials; Mitochondria; Oligomycins; Pancreatic Ducts; Pancreatic Neoplasms; Propidium; Rhodamine 123; Rhodamines; Rotenone; Sphingosine; Thapsigargin; Tumor Cells, Cultured; Uncoupling Agents; Uridine Diphosphate | 1996 |
Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake.
The human Caco-2 cell line spontaneously differentiates in culture to epithelial cells possessing intestinal enterocytic-like properties. These cells possess a proton-dependent dipeptide transport carrier that mediates the uptake of the cephalosporin antibiotic cephalexin (Dantzig, A.H. and Bergin, L. (1990) Biochim. Biophys. Acta 1027, 211-217). In the present study, the uptake of cefaclor was examined and found to be sodium-independent, proton-dependent, and energy-dependent. The initial rate of D-[3-phenyl-3H]cefaclor uptake was measured over a wide concentration range; uptake was mediated by a single saturable transport carrier with a Km of 7.6 mM and a Vmax of 7.6 nmol/min per mg protein and by a non-saturable component. Uptake was inhibited by dipeptides but not amino acids. The carrier showed a preference for the L-isomer. The effect of the presence of a 5-fold excess of other beta-lactam antibiotics was examined on the initial rates of 1 mM cefaclor and 1 mM cephalexin uptake. Uptake rates were inhibited by the orally absorbed antibiotics, cefadroxil, cefaclor, loracarbef, and cephradine and less so by the parenteral agents tested. The initial uptake rates of both D-[9-14C]cephalexin and D-[3-phenyl-3H]cefaclor were competitively inhibited by cephalexin, cefaclor, and loracarbef with Ki values of 9.2-13.2, 10.7-6.2, and 7.7-6.4 mM, respectively. Taken together, these data suggest that a single proton-dependent dipeptide transport carrier mediates the uptake of these orally absorbed antibiotics into Caco-2 cells, and provide further support for the use of Caco-2 cells as a cellular model for the study of the intestinal proton-dependent dipeptide transporter. Topics: 2,4-Dinitrophenol; Adenocarcinoma; Amino Acids; Azides; Binding, Competitive; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Carrier Proteins; Cefaclor; Cephalexin; Cephalosporins; Dinitrophenols; Dipeptides; Humans; Hydrogen-Ion Concentration; Intestinal Mucosa; Intestinal Neoplasms; Intestines; Kinetics; Nigericin; Oligomycins; Sodium Azide; Tumor Cells, Cultured | 1992 |
Evidence for mitochondrial localization of N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea in human colon adenocarcinoma cells.
N-(4-Methylphenylsulfonyl)-N'-(4-chlorophenyl)urea (MPCU) is a new agent that exhibits high therapeutic activity against human and rodent tumor models. Initial studies indicated that in vitro [3H]MPCU was concentrated 4- to 6-fold in GC3/c1 human colon adenocarcinoma cells in an azide-sensitive manner. In this study the dependence of uptake and concentrative accumulation of MPCU upon temperature, plasma membrane potential, and the electrochemical potential of mitochondria has been examined. Accumulation and efflux of MPCU were temperature dependent. At 3.6 microM MPCU, initial rates of uptake (15 s) were 1.4, 38.0, and 84.2 pmol/min/10(6) cells at 2 degrees C, 23 degrees C, and 37 degrees C, respectively. The rate of uptake and concentrative accumulation within GC3/c1 cells was not altered in high K+ buffer or by 1 mM ouabain, indicating that plasma membrane potential was not significant in these processes. Concentrative accumulation, but not initial uptake, was inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2,4-dinitrophenol, and sodium azide. Glucose partially antagonized the inhibition of these agents which uncouple oxidative phosphorylation. Oligomycin, an inhibitor of mitochondrial ATP synthase, did not inhibit uptake or concentrative accumulation of MPCU. However, oligomycin in the presence of 2-deoxyglucose significantly inhibited concentrative accumulation of MPCU. These results suggested that concentrative accumulation of MPCU was dependent upon the mitochondrial transmembrane gradient rather than ATP, although direct implication of ATP could not be excluded. To examine which component of this gradient was predominant in causing MPCU sequestration, the ionophores valinomycin and nigericin were used. Valinomycin, which collapses the charge gradient across the mitochondrial matrix membrane, caused only slight inhibition of MPCU accumulation, and the effect was similar at 2 or 10 mumol. In contrast, nigericin (which collapses the pH gradient and increases mitochondrial membrane potential) inhibited by approximately 90% concentrative accumulation of MPCU. These data suggested that MPCU was being concentrated in mitochondria and that this was dependent upon the pH gradient across mitochondrial membrane. In cells exposed to MPCU or the analogue N-(5-indanylsulfonyl)-N'-(4-chlorophenyl)urea, enlargement of mitochondria was observed within 24 h and appeared to be the initial morphological change associated with drug treatment. These res Topics: Adenocarcinoma; Antineoplastic Agents; Biological Transport; Cell Compartmentation; Colonic Neoplasms; Humans; Hydrogen-Ion Concentration; Membrane Potentials; Microscopy, Electron; Mitochondria; Nigericin; Oligomycins; Ouabain; Sulfonylurea Compounds; Uncoupling Agents; Valinomycin | 1990 |