oligomycins has been researched along with Acute-Kidney-Injury* in 2 studies
2 other study(ies) available for oligomycins and Acute-Kidney-Injury
Article | Year |
---|---|
Oligomycin, an F1Fo-ATPase inhibitor, protects against ischemic acute kidney injury in male but not in female rats.
We investigated the effects of oligomycin, an F1Fo-ATPase inhibitor, on ischemic acute kidney injury in male and female rats. Ischemic acute kidney injury was induced by clamping the left renal artery and vein for 45 or 60 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal dysfunction and histological renal damage were observed 1 day after reperfusion in both male and female rats, although these renal injuries were more marked in male rats than in female rats. Intravenous bolus injection of oligomycin (0.5 mg/kg) 5 min before ischemia markedly attenuated the ischemia/reperfusion-induced renal injury in male rats. However, oligomycin did not show the protective effect in female rats subjected to ischemia/reperfusion-induced renal injury. Pre-ischemic treatment with oligomycin suppressed partly but significantly ischemia-induced renal ATP depletion only in male rats. These results indicate that oligomycin prevents the onset of ischemic acute kidney injury in male but not in female rats, and the effect is accompanied by suppression of the ATP depletion only in the male rat kidney during ischemia, thereby suggesting that the ATP hydrolysis pathway by mitochondrial F1Fo-ATPase induces a sex difference in ischemic acute kidney injury. Topics: Acute Kidney Injury; Adenosine Triphosphate; Animals; Enzyme Inhibitors; Female; Hydrolysis; Injections, Intravenous; Kidney; Male; Mitochondria; Oligomycins; Proton-Translocating ATPases; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Sex Characteristics | 2013 |
Action of diclofenac on kidney mitochondria and cells.
The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttle explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell. Topics: Acute Kidney Injury; Adenosine Triphosphate; Animals; Aspartic Acid; Benzimidazoles; Carbocyanines; Cells, Cultured; Diclofenac; Dogs; Glutamate Dehydrogenase; Kidney; Malate Dehydrogenase; Malates; Membrane Potentials; Mitochondria; Mitochondrial Membranes; NADH Dehydrogenase; Oligomycins; Rats | 2006 |