oleuropein and Hypertension--Renal

oleuropein has been researched along with Hypertension--Renal* in 2 studies

Other Studies

2 other study(ies) available for oleuropein and Hypertension--Renal

ArticleYear
Oleuropein improves glucose tolerance and lipid profile in rats with simultaneous renovascular hypertension and type 2 diabetes.
    Journal of Asian natural products research, 2017, Volume: 19, Issue:10

    Oleuropein mediates most of the beneficial effects of olive products. This study examined the role of oxidative stress in the effects of oleuropein on lipid profile and blood glucose in rats with simultaneous renovascular hypertension and type 2 diabetes. Eight groups (n = 7-9 each) of male Sprague-Dawley rats including a control, a type 2 diabetic, a renovascular hypertensive, a sham, a simultaneously hypertensive diabetic receiving vehicle, and 3 simultaneously hypertensive-diabetic receiving 20, 40, or 60 mg/kg/day oleuropein were used. Four weeks after treatment, blood glucose, lipid profile, and biomarkers of oxidative stress were measured, and glucose tolerance test (GTT) was performed. Simultaneously hypertensive diabetic rats had significantly higher blood pressure, blood glucose, and serum total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride and malondialdehyde. They also had lower serum high-density lipoprotein cholesterol, erythrocyte superoxide dismutase, and impaired glucose tolerance. Oleuropein significantly reduced blood pressure, blood glucose, and serum total cholesterol, LDL-C, triglyceride and malondoaldehyde. It also increased serum high-density lipoprotein cholesterol, erythrocyte superoxide dismutase, and improved glucose tolerance. The findings show that the model is associated with impaired glucose tolerance, and adverse lipid profile. They also show that oleuropein, partly by an antioxidant mechanism, improves glucose tolerance and changed lipid profile favorably.

    Topics: Animals; Antioxidants; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucose Tolerance Test; Hypertension, Renal; Hypertension, Renovascular; Iridoid Glucosides; Iridoids; Lipids; Male; Malondialdehyde; Molecular Structure; Oxidative Stress; Rats; Rats, Sprague-Dawley; Streptozocin; Superoxide Dismutase

2017
Effects of oleuropein in rats with simultaneous type 2 diabetes and renal hypertension: a study of antihypertensive mechanisms.
    Journal of Asian natural products research, 2014, Volume: 16, Issue:9

    The mechanism of oleuropein's antihypertensive effects was examined in rat model of simultaneous type 2 diabetes and renal hypertension (diabetic hypertensive). Five groups of male Sprague-Dawley rats including a control, a diabetic-hypertensive group receiving vehicle, and three diabetic-hypertensive groups receiving oleuropein at 20, 40, or 60 mg/kg/day were used. The duration of diabetes was 10 weeks; during the last 4 weeks of which, animals were hypertensive and received vehicle or oleuropein. Systolic blood pressure, glucose and malondialdehyde, heart rate, and maximal response to phenylephrine (PE) in the absence of nitro-L-arginine methyl ester (L-NAME) of oleuropein-treated groups were significantly lower than those of vehicle-treated group. Erythrocyte superoxide dismutase, maximal response to PE in the presence of L-NAME, and maximal response to acetylcholine (Ach) of oleuropein-treated groups were significantly higher than those of vehicle-treated group. The findings indicate that antihypertensive effects of oleuropein might be partly mediated by improving the release of nitric oxide, and antioxidant and sympathoplegic activities.

    Topics: Acetylcholine; Animals; Antihypertensive Agents; Arginine; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Endothelium, Vascular; Hypertension, Renal; Iridoid Glucosides; Iridoids; Male; Molecular Structure; Nitric Oxide; Rats; Rats, Sprague-Dawley; Superoxide Dismutase

2014