oleandrin has been researched along with Osteosarcoma* in 3 studies
3 other study(ies) available for oleandrin and Osteosarcoma
Article | Year |
---|---|
Oleandrin sensitizes human osteosarcoma cells to cisplatin by preventing degradation of the copper transporter 1.
A major problem in osteosarcoma treatment is cisplatin resistance. We have reported the anti-osteosarcoma effect of oleandrin; however, whether oleandrin sensitizes osteosarcoma to cisplatin is unknown. We investigated the chemosensitization of oleandrin and potential mechanisms in osteosarcoma cells U-2OS, SaOS-2, and MG-63. The median-effect analysis demonstrated that cisplatin + oleandrin exerted synergistic (U-2OS and MG-63) or additive effects (SaOS-2), which were consistent with the changes of the intracellular accumulation of platinum (Pt) and Pt-DNA adducts. Immunohistochemistry staining showed that the expression level of the mature form CTR1, the major influx transporter of cisplatin, was low in osteosarcoma tissue. However, oleandrin with or without cisplatin significantly increased the expression and membrane localization of the mature CTR1. Furthermore, CTR1 knockdown reversed the synergistic effect and decreased cisplatin uptake. The mRNA microarray analysis suggested that oleandrin downregulated the expression of proteasome-related genes, which was verified by the proteasome activity assay. Besides, the proteasome inhibitor MG132 upregulated the expression of the mature CTR1 in U-2OS and MG-63 cells. Overall, we conclude that oleandrin sensitizes osteosarcoma cells to cisplatin in synergistic or additive manners. The synergy results from the enhanced cisplatin uptake via oleandrin-mediated inhibition of proteasome activity and subsequent blockage of the mature CTR1 degradation. Topics: Antineoplastic Agents; Bone Neoplasms; Cardenolides; Cation Transport Proteins; Cell Line, Tumor; Cisplatin; Copper Transporter 1; Humans; Osteosarcoma | 2019 |
Oleandrin synergizes with cisplatin in human osteosarcoma cells by enhancing cell apoptosis through activation of the p38 MAPK signaling pathway.
Our previous studies have reported the antitumor effect of oleandrin on osteosarcoma; however, its chemosensitizing effect in osteosarcoma treatment is still unknown. Therefore, we explored the sensitizing effects of oleandrin to cisplatin in osteosarcoma and investigated the potential mechanisms.. After exposure to oleandrin and/or cisplatin, CCK-8 and colony formation assays, DAPI staining and flow cytometry were performed to detect cell proliferation and apoptosis in 143B, U-2OS and MG-63 osteosarcoma cells. The median-effect analysis was applied to evaluate the combined effect. Western blot was used to determine the expression of related proteins. Osteosarcoma xenografts and histological observations were applied to confirm the combined effect in vivo.. Compared with cisplatin or oleandrin alone, the combined treatment significantly inhibited cell proliferation and induced cell apoptosis. The median-effect analysis indicated a synergistic cytotoxic effect. The combined treatment downregulated Bcl-2 and upregulated Bax and cleaved caspase-3, -8 and -9. And the suppression of caspases reduced cell death. Furthermore, oleandrin alone or with cisplatin, activated the p38 MAPK/Elk-1 pathway. The inhibition of the p38 MAPK pathway increased cell viability and reduced apoptosis. In vivo, the combined treatment was also verified to significantly inhibit tumor growth, induce apoptosis and activate the p38 MAPK pathway.. The combination of oleandrin with cisplatin exerts a synergistic antitumor effect in osteosarcoma, which relates to the activation of the p38 MAPK pathway. Topics: Antineoplastic Agents; Apoptosis; Cardenolides; Cell Line, Tumor; Cisplatin; Drug Synergism; Humans; MAP Kinase Signaling System; Osteosarcoma; Signal Transduction | 2018 |
Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway.
Osteosarcoma (OS) is a high-grade bone sarcoma with early metastasis potential, and the clinical chemotherapy drugs that are currently used for its treatment have some limitations. Recently, several studies have reported the selective antitumor effect of oleandrin on various tumor cells. In this study, we aimed to evaluate the effects and underlying mechanisms of oleandrin on OS cells.. The effect of oleandrin on the proliferation, morphology, and apoptosis of U2OS and SaOS-2 cells were analyzed in vitro. The activity of the Wnt/β-catenin signaling pathway was determined using a dual luciferase assay. Semi-quantitative RT-PCR and western blot assays were performed to evaluate the mRNA and total protein expression of the downstream target genes. Changes of β-catenin in intracellular localization were also explored using a western blot after separating the nucleus and cytoplasm proteins. The MMP-2 and MMP-9 enzymatic activities were determined using gelatin zymography.. Oleandrin significantly inhibited the proliferation and invasion of OS cells in vitro, and induced their apoptosis. After treatment with oleandrin, the TOP/FOP flash ratio in OS cells was noticeably decreased, which indicated that the Wnt/β-catenin signaling pathway was repressed. The expression of related Wnt target genes and total β-catenin was downregulated, and a reduced nuclear β-catenin level by oleandrin was observed as well. In addition, oleandrin suppressed the activities of MMP-2 and MMP-9.. Oleandrin, in vitro, exerted a strong antitumor effect on human OS cells by suppressing the Wnt/β-catenin signaling pathway, which interfered with the proliferation and invasion of OS cells, as well as induced cells apoptosis. Moreover, the expression and activities of MMP-2 and MMP-9 were downregulated by oleandrin, which contributed to the cells' lower invasiveness. Topics: Antineoplastic Agents; Apoptosis; beta Catenin; Bone Neoplasms; Cardenolides; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Invasiveness; Osteosarcoma; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Wnt Proteins; Wnt Signaling Pathway | 2015 |