oleanane and Prostatic-Neoplasms

oleanane has been researched along with Prostatic-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for oleanane and Prostatic-Neoplasms

ArticleYear
Aridanin and oleanane-3- O-β-D-glucoside-2'-acetamide obtained from Tetrapleura tetraptera (Schumach. & Thonn) Taub. (Fabaceae) induces potent apoptotic activity in human prostate cancer cells.
    Journal of ethnopharmacology, 2024, Jan-30, Volume: 319, Issue:Pt 3

    Tetrapleura tetraptera (Schumach. and Thonn.) Taub. (Fabaceae) is a tropical plant that is used in Cameroon pharmacopeia for the treatment of many cancers including prostate cancer (PCa), which is a major cause of men's death worldwide. The objective of this study was to evaluate the anticancer properties as well as underlying mechanisms of isolates from T. tetraptera on DU145, PC3 and LNCaP cancer cell lines.. Eight (8) compounds were purified from T. tetraptera stem bark extract through silica gel column chromatography (CC) and characterized using spectroscopic techniques (1D and 2D NMR), HRESIMS. Cell growth was assessed by a well-characterized MTT assay, while BrdU and clonogenicity assays provided information on the cell proliferation index. Further, the impact of the compounds on cell cycle progression and cell death were performed through Flow cytometry. Cell adhesion, cell migration and chemotaxis along with some proteins of epithelial-mesenchymal transition (EMT) were assayed.. This study outlines for the first time, the anticancer ability of compounds oleanane-3-O-β-D-glucoside-2'-acetamide (4) and aridanin (6) from Tetrapleura tetraptera and proposes their putative mechanisms of action.

    Topics: Apoptosis; Cell Line, Tumor; Fabaceae; Humans; Integrins; Male; Plant Extracts; Prostatic Neoplasms; Tetrapleura

2024
Ameliorative Effect of Structurally Divergent Oleanane Triterpenoid, 3-Epifriedelinol from
    Molecules (Basel, Switzerland), 2022, Dec-29, Volume: 28, Issue:1

    The pentacyclic triterpenoids (PTs) of plant origin are reputed to restrain prostate cancer (PCa) cell proliferation. This study aims to assess 3-epifriedelinol (EFD) isolated from aerial part of Ipomoea batatas against PCa and its potential mechanism, in vitro and in vivo. Molecular docking affirms good binding affinity of the compound with target proteins exhibiting binding energy of −7.9 Kcal/mol with BAX, −8.1 Kcal/mol (BCL-2), −1.9 Kcal/mol (NF-κB) and −8.5 Kcal/mol with P53. In the MTT assay, EFD treatment (3−50 µM) showed a significant (p < 0.05 and p < 0.01) dose and time dependent drop in the proliferative graph of DU145 and PC3, and an upsurge in apoptotic cell population. EFD displayed substantial IC50 against DU145 (32.32 ± 3.72 µM) and PC3 (35.22 ± 3.47 µM). According to Western blots, EFD administration significantly enhanced the cleavage of caspases and PARP, elevated BAX and P53 and decreased BCL-2 and NF-κB expression, thereby triggering apoptosis in PCa cells. When male Sprague Dawley rats were intoxicated with Bisphenol A (BPA), an apparent increase in prostate mass (0.478 ± 0.08 g) in comparison to control (0.385 ± 0.03 g) indicates prostatitis. Multidose treatment of EFD (10 mg/kg) significantly reduced prostate size (0.404 ± 0.05 g). EFD exhibited substantial curative potential in vivo, as hematological, hormonal and histopathological parameters have been significantly improved. Reduced peroxidation (TBARS), and suppression of inflammatory markers i.e., NO, IL-6 and TNF-α, signposts substantial antiinflammatory potential of the compound. Overall, EFD has shown better binding affinity with target molecules, acceptable ADMET profile, potent antiproliferative and apoptotic nature and significant reduction in inflamed prostate mass of rats. The present study demonstrates acceptable physicochemical and pharmacokinetic properties of the compound with excellent drugable nature, hence EFD in the form of standardized formulation can be developed as primary or adjuvant therapy against PCa and toxins-induced gonadotoxicity.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cell Line, Tumor; Ipomoea batatas; Male; Molecular Docking Simulation; NF-kappa B; Poly(ADP-ribose) Polymerase Inhibitors; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Triterpenes; Tumor Suppressor Protein p53

2022
Telomerase reverse transcriptase (TERT) is a therapeutic target of oleanane triterpenoid CDDO-Me in prostate cancer.
    Molecules (Basel, Switzerland), 2012, Dec-11, Volume: 17, Issue:12

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is an synthetic oleanane triterpenoid with strong antiprolifertive and proapoptotic activities in cancer cells. However, the effect of CDDO-Me on human telomerase reverse transcriptase (hTERT) and its telomerase activity in prostate cancer cells has not been studied. We investigated the role of hTERT in mediating the anticancer activity of CDDO-Me in prostate cancer cells in vitro and in vivo. The inhibition of cell proliferation and induction of apoptosis by CDDO-Me in LNCaP and PC-3 prostate cancer cell lines was associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT transcriptionally and post-translationally. Furthermore, ablation of hTERT protein increased the sensitivity of cancer cells to CDDO-Me, whereas its overexpression rendered them resistant to CDDO-Me. In addition, inhibition of progression of preneoplastic lesions (i.e., low and high-grade prostate intraepithelial neoplasms, PINs) to adenocarcinoma of the prostate by CDDO-Me in TRAMP mice was associated with significant decrease in TERT and its regulatory proteins in the prostate gland. These data provide evidence that telomerase is a potential target of CDDO-Me for the prevention and treatment of prostate cancer.

    Topics: Animals; Apoptosis; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation; Humans; Male; Mice; NF-kappa B; Oleanolic Acid; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; STAT3 Transcription Factor; Telomerase

2012
Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism.
    Biochemical pharmacology, 2010, Feb-01, Volume: 79, Issue:3

    CDDO-Me, a synthetic triterpenoid derived from oleanolic acid, is a promising anticancer agent that has shown strong activity against a wide variety of cancer types in vitro and in vivo. We have previously shown that CDDO-Me induces apoptosis in prostate cancer cells irrespective of their hormonal status. To further understand the proapoptotic mechanism of CDDO-Me, we investigated the role of reactive oxygen species (ROS) in mediating the apoptosis inducing activity of CDDO-Me in LNCaP and PC-3 prostate cancer cell lines. Here, we show that CDDO-Me induces ROS generation from both nonmitochondrial and mitochondrial sources, which is associated with the induction of apoptosis as characterized by increased annexin V-binding, cleavage of PARP-1 and procaspases-3, -8, -9, loss of mitochondrial membrane potential and release of cytochrome c. In addition, CDDO-Me inhibited cell survival Akt, NF-kappaB and mTOR signaling proteins. The inhibition of ROS generation by N-acetylcysteine (NAC) or by overexpression of antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase-1 (SOD-1) prevented CDDO-Me-induced apoptosis. Pretreatment with NAC blocked annexin V-binding, cleavage of PARP-1 and procaspases-3, -8, -9, loss of mitochondrial membrane potential and release of cytochrome c by CDDO-Me. NAC also prevented the inhibition of constitutively active Akt, NF-kappaB and mTOR by CDDO-Me. Together, these data indicate that ROS plays an essential role in the induction of apoptosis by CDDO-Me in prostate cancer cells.

    Topics: Apoptosis; Cell Line, Tumor; Growth Inhibitors; Humans; Male; Oleanolic Acid; Prostatic Neoplasms; Reactive Oxygen Species

2010