okadaic-acid has been researched along with Memory-Disorders* in 21 studies
21 other study(ies) available for okadaic-acid and Memory-Disorders
Article | Year |
---|---|
Pseudoginsenoside-F11 ameliorates okadiac acid-induced learning and memory impairment in rats via modulating protein phosphatase 2A.
We have reported that pseudoginsenoside-F11 (PF11) can significantly improve the cognitive impairments in several Alzheimer's disease (AD) models, but the mechanism has not been fully elucidated. In the present study, the effects of PF11 on AD, in particular the underlying mechanisms related with protein phosphatase 2A (PP2A), were investigated in a rat model induced by okadaic acid (OA), a selective inhibitor of PP2A. The results showed that PF11 treatment dose-dependently improved the learning and memory impairments in OA-induced AD rats. PF11 could significantly inhibit OA-induced tau hyperphosphorylation, suppress the activation of glial cells, alleviate neuroinflammation, thus rescue the neuronal and synaptic damage. Further investigation revealed that PF11 could regulate the protein expression of methyl modifying enzymes (leucine carboxyl methyltransferase-1 and protein phosphatase methylesterase-1) in the brain, thus increase methyl-PP2A protein expression and indirectly increase the activity of PP2A. Molecular docking analysis, structural alignment and in vitro results showed that PF11 was similar in the shape and electrostatic field feature to a known activator of PP2A, and could directly bind and activate PP2A. In conclusion, the present data indicate that PF11 can ameliorate OA-induced learning and memory impairment in rats via modulating PP2A. Topics: Animals; Enzyme Activators; Ginsenosides; Learning Disabilities; Male; Memory Disorders; Molecular Docking Simulation; Okadaic Acid; Protein Phosphatase 2; Rats; Rats, Sprague-Dawley | 2021 |
Cannabinoid type 2 receptor agonist JWH-133, attenuates Okadaic acid induced spatial memory impairment and neurodegeneration in rats.
Cannabinoid system has various physiological roles such as neurogenesis, synaptic plasticity and emotional state regulation in the body. The presence of cannabinoid type 2 receptor (CB2), a member of the cannabinoid system, was detected in different regions of the brain. CB2 receptor plays a role in neuroinflammatory and neurodegenerative processes. We aimed to determine the possible effect of CB2 agonist JWH-133 in Okadaic acid (OKA)-induced neurodegeneration model mimicking Alzheimer's Disease (AD) through tau pathology.. In this study, 40 Sprague Dawley male rats were divided into 4 groups (Control, Sham, OKA, OKA + JWH-133). Bilateral intracerebroventricular (icv) injection of 200 ng OKA was performed in the OKA group. In the OKA + JWH-133 group, injection of JWH-133 (0.2 mg/kg) was performed intraperitoneally for 13 days different from the group of OKA. Morris water maze test was used to evaluate the spatial memory. Levels of caspase-3, phosphorylated tau (ser396), amyloid beta (Aβ), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in brain cortex; and the hippocampus regions were examined by immunohistochemical methods.. In the OKA group, caspase-3, phosphorylated tau (ser396), Aβ, IL-1β levels were higher in the cortex and hippocampus than in the other groups. The implementation of the JWH-133 reversed the increments in these parameters, and also prevented spatial memory impairment.. In this study, we found that the administration of the CB2 receptor agonist JWH-133 in this study reduced neurodegeneration, neuroinflammation, and spatial memory impairment in the OKA-induced Alzheimer's Disease model. Topics: Animals; Brain; Cannabinoids; Male; Memory Disorders; Neuroprotective Agents; Okadaic Acid; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Spatial Memory; tau Proteins | 2019 |
Okadaic acid attenuates short-term and long-term synaptic plasticity of hippocampal dentate gyrus neurons in rats.
Protein phosphorylation states have a pivotal role in regulation of synaptic plasticity and long-term modulation of synaptic transmission. Serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) have a critical effect on various regulatory mechanisms involved in synaptic plasticity, learning and memory. Okadaic acid (OKA), a potent inhibitor of PP1 and PP2A, reportedly leads to cognitive decline and Alzheimer's disease (AD)-like pathology. The aim of this study was to examine the effect of OKA on electrophysiological characteristics of hippocampal dentate gyrus (DG) neurons in vivo. Male Wistar rats were divided into two control and OKA groups. OKA was injected intracerebroventricularly (i.c.v.) into lateral ventricles and after two weeks the long-term potentiation (LTP) and paired-pulse responses recorded from hippocampal perforant path-DG synapses in order to assess short-term and long-term synaptic plasticity. Results of this study revealed that OKA-induced inhibition of PP1 and PP2A activity drastically attenuates the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude following paired pulse and high frequency stimulation (HFS) of hippocampal DG neurons indicating pre- and post-synaptic involvement in electrical activity of these neurons. Administration of OKA impaired the short-term and long-term spatial memories conducted by Y-maze and passive avoidance tests, respectively. OKA-induced attenuation in electrophysiological activity and consequent memory deficits also provide a beneficial tool for studying neurodegenerative disorders such as AD. Topics: Animals; Behavior, Animal; Dentate Gyrus; Disease Models, Animal; Enzyme Inhibitors; Injections, Intraventricular; Male; Memory Disorders; Memory, Long-Term; Memory, Short-Term; Neuronal Plasticity; Okadaic Acid; Protein Phosphatase 1; Protein Phosphatase 2; Rats; Rats, Wistar; Spatial Memory | 2019 |
Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.
Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ. Topics: Animals; Antioxidants; Apoptosis; Biomarkers; Cell Line, Tumor; Cell Survival; Glutamate-Cysteine Ligase; Glutathione; Heme Oxygenase-1; Inflammation; Isothiocyanates; Male; Maze Learning; Memory Disorders; Motor Activity; Neuroprotective Agents; NF-E2-Related Factor 2; Okadaic Acid; Oxidative Stress; Protoporphyrins; Rats, Sprague-Dawley; Reactive Oxygen Species; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Sulfoxides | 2016 |
A new coumarin derivative, IMM-H004, attenuates okadaic acid-induced spatial memory impairment in rats.
A novel coumarin derivative 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) has shown anti-apoptotic, anti-inflammatory and neuroprotective activities. In this study we investigated the effects of IMM-H004 on spatial memory in rats treated with okadaic acid (OKA), which was used to imitate Alzheimer's disease (AD)-like symptoms.. SD rats were administered IMM-H004 (8 mg·kg(-1)·d(-1), ig) or donepezil (positive control, 1 mg·kg(-1)·d(-1), ig) for 25 d. On d 8 and 9, OKA (200 ng) was microinjected into the right ventricle. Morris water maze test was used to evaluate the spatial memory impairments. Tau and β-amyloid (Aβ) pathology in the hippocampus was detected using Western blot and immunohistochemistry. TUNEL staining was used to detect cell apoptosis.. OKA-treated rats showed significant impairments of spatial memory in Morris water maze test, which were largely reversed by administration of IMM-H004 or donepezil. Furthermore, OKA-treated rats exhibited significantly increased phosphorylation of tau, deposits of Aβ protein and cell apoptosis in the hippocampus, which were also reversed by administration of IMM-H004 or donepezil.. Administration of IMM-H004 or donepezil protects rats against OKA-induced spatial memory impairments via attenuating tau or Aβ pathology. Thus, IMM-H004 may be developed as a therapeutic agent for the treatment of AD. Topics: Amyloid beta-Peptides; Animals; Coumarins; Male; Memory Disorders; Okadaic Acid; Rats, Sprague-Dawley; Spatial Memory; tau Proteins | 2016 |
MEMANTINE ATTENUATES THE OKADAIC ACID INDUCED SHORT-TERM SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS IN RATS.
In the present study, the possible beneficial effect of memantine on the Okadaic Acid (OA) induced spatial short-term memory impairment was examined in spatial alternation task, and the neuroprotective potential of memantine on OA-induced structural changes in the hippocampus was evaluated by Nissl staining. OA was dissolved in artificial cerebrospinal fluid (aCSF) and injected intracerebroventriculary (ICV) 200 ng in a volume of 10 μl bilaterally. Vehicle control received aCSF ICV bilaterally. Control and OA injected rats were divided into 2 subgroups injected i.p. with saline or memantine (5 mg/kg). Memantine or saline were given daily for 13 days starting from the day of OA injection. Behavioral study showed that bilateral ICV microinjection of OA induced impairment in spatial short-term memory. Nissl staining in the present study showed that the ICV microinjection of OA significantly decreased the number of surviving pyramidal neurons in the CA1 region of the hippocampus. Chronic administration of memantine effectively attenuated OA induced spatial short-term memory impairment and the OA-induced neuropathological changes in the hippocampus. Therefore, ICV injection of OA can be used as an experimental model to study mechanisms of neurodegeneration and define novel therapeutics targets for AD pathology. Topics: Animals; Cell Count; Hippocampus; Male; Memantine; Memory Disorders; Memory, Short-Term; Neuroprotective Agents; Okadaic Acid; Pyramidal Cells; Rats; Spatial Memory | 2016 |
Green tea polyphenols protect against okadaic acid-induced acute learning and memory impairments in rats.
Green tea polyphenols (GTPs) are now being considered possible protective agents in neurodegenerative diseases such as Alzheimer's disease (AD). Previous studies suggested that GTPs could inhibit amyloid fibril formation and protect neurons from toxicity induced by β-amyloid. However, whether GTPs can ameliorate learning and memory impairments and also reduce tau hyperphosphorylation induced by okadaic acid (OA) in rats remains unclear. The aim of this study was to determine if GTPs have neuroprotection against OA-induced neurotoxicity.. In this work, rats were pretreated with GTPs by intragastric administration for 4 wk. Then OA was microinjected into the right dorsal hippocampus. Morris water maze tests were used to test the ethologic changes in all groups, and tau protein hyperphosphorylation was detected both in vivo and in vitro.. The ethologic test indicated that the staying time and swimming distance in the target quadrant were significantly decreased after OA treatment, whereas rats pretreated with GTPs stayed longer in the target quadrant. Methyl thiazolyl tetrazolium assay and lactate dehydrogenase leakage showed that GTPs greatly ameliorated primary hippocampal neurons damage induced by OA. Furthermore, reduced hyperphosphorylated tau protein was detected with GTPs pretreatment.. Taken together, our results suggest that GTPs have neuroprotection against OA-induced neurotoxicity. Topics: Alzheimer Disease; Animals; Antioxidants; Hippocampus; Learning; Maze Learning; Memory Disorders; Neuroprotective Agents; Okadaic Acid; Phosphorylation; Polyphenols; Rats; Rats, Sprague-Dawley; tau Proteins; Tea | 2014 |
Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance.
In a variety of neurodegenerative tauopathies including Alzheimer's disease, frontotemporal dementia and some types of Parkinson's disease, tau protein is abnormally hyperphosphorylated by several kinases and eventually aggregates to form neurofibrillary tangles, a neurotoxic pathological characteristic that closely correlates with cognitive impairments. Hence, targeting hyperphosphorylated tau protein has now been considered as a valid therapeutic approach for these neurodegenerative tauopathies. As a newly developed analog of rapamycin, temsirolimus was approved by the U.S. Food and Drug Administration and the European Medicines Agency for the treatment of renal cell carcinoma. Recent findings suggested that temsirolimus also provided beneficial effects in animal models of Huntington's disease and spinocerebellar ataxia type 3, two neurodegenerative diseases caused by accumulation of aberrant proteins within brain. To date, the therapeutic potentials of temsirolimus in neurodegenerative tauopathies have not been determined. Herein, we demonstrated for the first time that temsirolimus treatment effectively enhanced autophagic clearance of hyperphosphorylated tau in okadaic acid-incubated SH-SY5Y cells and in brain of P301S transgenic mice. Meanwhile, we showed that inactivation of glycogen synthase kinase-3β, the most important tau kinase, might contribute to the temsirolimus-induced reduction of tau hyperphosphorylation in these two tauopathy models. More importantly, temsirolimus administration rescued spatial learning and memory impairments in P301S transgenic mice. These findings highlight temsirolimus administration as a potential therapeutic strategy for neurodegenerative tauopathies. Topics: Animals; Autophagy; Brain; Cell Line, Tumor; Disease Models, Animal; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Male; Memory Disorders; Mice, Inbred C57BL; Mice, Transgenic; Neuroprotective Agents; Okadaic Acid; Phosphorylation; Sirolimus; Spatial Learning; Spatial Memory; tau Proteins; Tauopathies | 2014 |
Mechanism of synapse redox stress in Okadaic acid (ICV) induced memory impairment: Role of NMDA receptor.
The N-methyl-D-aspartate (NMDA) receptor is a subtype of ionotropic glutamate receptor that is involved in synaptic mechanisms of learning and memory, and mediates excitotoxic neuronal injury. In this study, we tested the hypothesis that NMDA receptor subunit gene expression is altered in cortex and hippocampus of OKA induced memory impairment. Therefore in the present study, we checked the effect of OKA (ICV) on NMDA receptor regulation and synapse function. The memory function anomalies and synaptosomal calcium ion (Ca(2+)) level were increased in OKA treated rats brain; which was further protected by MK801 (0.05mg/kg. i.p) treatment daily for 13days. To elucidate the involvement of NMDA receptor, we estimated NR1, NR2A and NR2B (subunits) expression in rat brain. Results showed that expression of NR1 and NR2B were significantly increased, but expression of NR2A had no significant change in OKA treated rat brain. We also observed decrease in synapsin-1 mRNA and protein expression which indicates synapse dysfunction. In addition, we detected an increase in MDA and nitrite levels and a decrease in GSH level in synapse preparation which indicates synapse altered redox stress. Moreover, neuronal loss was also confirmed by nissl staining in periventricular cortex and hippocampus. Altered level of oxidative stress markers along with neuronal loss confirmed neurotoxicity. Further, MK801 treatment restored the level of NR1, NR2B and synapsin-1 expression, and protected from neuronal loss and synapse redox stress. In conclusion, Okadaic acid (OKA) induced expression of NR1 and NR2B deteriorates synapse function in rat brain which was confirmed by the neuroprotective effect of MK801. Topics: Animals; Base Sequence; Behavior, Animal; Dizocilpine Maleate; DNA Primers; Excitatory Amino Acid Antagonists; Hippocampus; Injections, Intraventricular; Male; Memory Disorders; Okadaic Acid; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Reverse Transcriptase Polymerase Chain Reaction; Synapses | 2014 |
Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats.
Ginsenoside Rg1, one of the major active ingredients isolated from Panax Ginseng, has been shown notable neuroprotective effects in memory impairment animals. However, the role of ginsenoside Rg1 on cognition capacity damaged by neurofibrillary tangles (NFTs) is still poorly understood, and the underlying mechanism remain to be fully elucidated. Okadaic acid (OKA), a potent phosphatase inhibitor, often apply to imitate Alzheimer's disease-like symptom damaged by neurofibrillary tangles, was used to investigate the effects of ginsenoside Rg1 on memory impairment and the related mechanisms in Sprague Dawley (SD) rats. The anti-dementic drug donepezil was used as a positive contrast. The results showed that OKA intracerebroventricular (i.c.v.) injection induced memory impairment, including changes in the ability of orientation navigate, spatial probe and relearning memory in behavioral test of Morris water maze (MWM). However, treatment with Rg1 and donepezil remarkably alleviated these changes. Also OKA treated rats showed memory impairment including increasing of phospho-tau, decreasing of phospho-GSK3β and the formation of β-amyloid in special brain regions, which were reversed by Rg1 (20 mg/kg) and donepezil (1 mg/kg) administration. All these indicating that ginsenoside Rg1 protects rats against OKA-induced neurotoxicity. The possible neuroprotective mechanism may be that Rg1 decreases OKA-induced memory impairment through GSK3β/tau signaling pathway and/or attenuating Aβ formation. Thus, these studies indicate that ginsenoside Rg1 might be a potential preventive drug for Alzheimer's disease. Topics: Alzheimer Disease; Animals; Ginsenosides; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Hippocampus; Male; Maze Learning; Memory Disorders; Neuroprotective Agents; Okadaic Acid; Parietal Lobe; Rats; Rats, Sprague-Dawley; tau Proteins | 2013 |
A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats.
The aim of the present study is to investigate the status of proinflammatory cytokine in the brain of intracerebroventricular (i.c.v.) okadaic acid (OKA) induced memory impaired rat.. OKA (200 ng) intracerebroventricular (i.c.v.) was administered in rats. Memory was assessed by Morris water maze test. Biochemical marker of neuroinflammation (TNF-α, IL-β), total nitrite, mRNA (RT PCR) and protein expression (WB) of iNOS and nNOS were estimated in rat brain areas.. OKA caused memory-impairment in rats with increased expression of proinflammatory cytokine TNF-α and IL-1β and total nitrite in brain regions hippocampus and cortex. The expression of mRNA and protein of iNOS was increased while; the expressions were decreased in case of nNOS. Pretreatment with antidementic drugs donepezil (5 mg/kg, p.o.) and memantine (10 mg/kg, p.o) for 13 days protected i.c.v. OKA induced memory impairment and changes in level of TNF-α, IL-β, total nitrite and expressions of iNOS and nNOS in OKA treated rat.. This study suggests that neuroinflammation may play a vital role in OKA induced memory impairment. Topics: Animals; Behavior, Animal; Biomarkers; Blotting, Western; Donepezil; Excitatory Amino Acid Antagonists; Indans; Inflammation; Injections, Intraventricular; Interleukin-1beta; Male; Maze Learning; Memantine; Memory Disorders; Motor Activity; Nitrate Reductase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitrites; Nootropic Agents; Okadaic Acid; Piperidines; Polymerase Chain Reaction; Rats; Rats, Sprague-Dawley; Reactive Nitrogen Species; RNA, Messenger; Tumor Necrosis Factor-alpha | 2012 |
Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats.
Central cholinergic system is involved in regulation of memory and disturbances in these results in memory loss. Previously, we examined the effect of okadaic acid, OKA (200ng, i.c.v.) on memory impairment and mitochondrial dysfunction in rats. In the present study, we investigated effect of OKA (i.c.v) on cholinergic function by observing acetylcholine level (ACh), acetylcholinestrase (AChE) activity, and mRNA expression of acetylcholinestrase and α7nicotinic receptor (α7-nAChR) as a cholinergic markers in brain areas (cerebellum, striatum cortex and hippocampus). In present work OKA, caused a significant decrease in acetylcholine level, acetylcholinestrase activity and mRNA expression of acetylcholinestrase and α7-nicotinic receptor in rat but these changes were mainly observed in cortex and hippocampus. Further, histopathological study by cresyl violet staining showed neuronal loss in cortex and hippocampus after OKA administration indicating neurotoxicity. Pretreatment with anti-dementic drugs donepezil (AChE inhibitor; 5mg/kg, p.o) and memantine (NMDA receptor antagonist; 10mg/kg, p.o) daily for 13 day prevented cholinergic dysfunction and neuronal loss in cortex and hippocampus of OKA treated rat. Daily per se treatment for 13 day with donepezil decreased acetylcholinestrase activity and increased mRNA expression of acetylcholinestrase and α7-nicotinic receptor. Whereas, per se treatment with memantine daily for 13 day did not affect acetylcholinestrase activity, mRNA expression of acetylcholinestrase and α7-nicotinic receptor. Findings of this work shows that OKA (i.c.v.), apart from memory impairment and mitochondrial dysfunction, as our previous study showed, also induced cholinergic dysfunction and neuronal loss, which can be addressed by antidementic drugs like donepezil and memantine. Topics: Acetylcholine; Acetylcholinesterase; Animals; Biomarkers; Donepezil; Gene Expression Regulation; Hippocampus; Indans; Male; Memantine; Memory Disorders; Motor Activity; Neurons; Neurotoxins; Okadaic Acid; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; RNA, Messenger | 2012 |
Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain.
Mitochondrial abnormalities have been identified in a large proportion of neurodegenerative diseases. Recently we have reported that intracerebroventricular (ICV) administration of okadaic acid (OKA) causes memory impairment in rat. However involvement of mitochondrial function in OKA induced memory impairment and neuronal damage has not been determined. OKA (200 ng) was administered by ICV route. After 13th day of OKA administration memory function was evaluated by Morris Water Maze test. Following completion of behavioral studies on 16th day, mitochondrial membrane potential, Ca(2+) and reactive oxygen species were evaluated in mitochondrial preparation of cortex, hippocampus, striatum and cerebellum of rat brain. While ATP, mitochondrial activity, lipid peroxidation and nitrite were investigated in synaptosomal preparation of rat brain areas. The activities and mRNA expression of apoptotic factors, caspase-3 and caspase-9, were studied in rat brain regions. The neuronal damage was also confirmed by histopathological study. OKA treated rats showed memory impairment including increased Ca(2+) and reactive oxygen species and decreased mitochondrial membrane potential, ATP and mitochondrial activity in mitochondrial preparation. There was a significant increase in lipid peroxidation and nitrite in synaptosomal preparations. Preventive treatment daily for 13 days with antidementic drugs, donepezil (5 mg/kg, p.o) and memantine (10 mg/kg, p.o), significantly attenuated OKA induced mitochondrial dysfunction, apoptotic cell death, memory impairment and histological changes. Mitochondrial dysfunction appeared as a key factor in OKA induced memory impairment and apoptotic cell death. This study indicates that clinically used antidementic drugs are effective against OKA induced adverse changes at behavioral, cellular, and histological levels and mitochondrial dysfunction. Topics: Animals; Apoptosis; Brain; Injections, Intraventricular; Lipid Peroxidation; Male; Memory Disorders; Mitochondria; Okadaic Acid; Rats; Rats, Sprague-Dawley | 2011 |
Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity.
Okadaic acid (OKA) is a potent and selective inhibitor of protein phosphatases, PP2A and PP1. In the present study, we evaluated effect of intracerebroventricular (ICV) bilateral injection of OKA (100 and 200 ng) on memory function and oxidative stress in rats. ICV injection of OKA (200 ng) produced memory impairment as evidenced by no significant decrease in latency time to reach the hidden platform in water maze test. It produced increase in malondialdehyde (MDA), nitrite level, reactive oxygen species (ROS) generation, mitochondrial calcium ion [Ca(2)](i) level and decreased glutathione (GSH) level in rat brain areas, indicating oxidative stress. Furthermore, we evaluated the effect of anti-dementia drugs memantine, a NMDA antagonist, and donepezil, a cholinesterase inhibitor, on OKA ICV induced memory impairment. Administration of memantine (10 mg/kg, p.o.) and donepezil (5 mg/kg, p.o.) for 13 days starting from the OKA injection improved performance in memory tests and also significantly restored GSH, MDA, nitrite levels, ROS generation and [Ca(2+)](i) level. This study demonstrates that the clinically used anti-dementic drugs are effective in OKA induced free radical generation and memory impairment in rats. Thus, OKA ICV induced memory impairment in rat appeared as a useful test model to screen anti-dementia drugs. Topics: Animals; Brain; Calcium Signaling; Cholinesterase Inhibitors; Dementia; Disease Models, Animal; Donepezil; Drug Evaluation, Preclinical; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glutathione; Indans; Injections, Intraventricular; Male; Malondialdehyde; Maze Learning; Memantine; Memory; Memory Disorders; Neuropsychological Tests; Nitrites; Okadaic Acid; Oxidative Stress; Piperidines; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Treatment Outcome | 2010 |
Acetyl-L-carnitine attenuates okadaic acid induced tau hyperphosphorylation and spatial memory impairment in rats.
Tau hyperphosphorylation and memory deficit are characteristic alterations of Alzheimer's disease (AD). Protein phosphatases (PP) 2A plays a crucial role in AD-like lesions. Inhibition of PP2A through hippocampal injection of okadaic acid (OA) induces tau hyperphosphorylation and memory impairment of rats. By using this model, we explored in the present study the effects of acetyl-L-carnitine (ALCAR), a constituent of the inner mitochondrial membrane, on the memory retention, tau phosphorylation, and oxidative stress in rats. We found that pre-treatment of ALCAR (50 mg/d . rat, per os) for two weeks efficiently improved the OA-induced spatial memory retention impairment of the rats. ALCAR antagonized tau hyperphosphorylation at multiple AD sites and it abated the OA-induced PP2A inhibition and oxidative stress. Our study provides the first in vivo evidence that ALCAR can attenuate AD-like PP2A inhibition, tau hyperphosphorylation, and spatial memory deficit of the rats. It suggests that ALCAR may hold potential in AD treatment. Topics: Acetylcarnitine; Analysis of Variance; Animals; Disease Models, Animal; Hippocampus; Lipid Peroxidation; Male; Maze Learning; Memory Disorders; Nootropic Agents; Okadaic Acid; Oxidative Stress; Phosphorylation; Protein Phosphatase 2; Rats; Rats, Sprague-Dawley; Reaction Time; Space Perception; Superoxide Dismutase; tau Proteins | 2010 |
[Protective effect of (-) clausenamide against neurotoxicity induced by okadaic acid and beta-amyloid peptide25-35].
This study is to investigate the protective effect of (-) clausenamide against the neurotoxicity of okadaic acid in SH-SY5Y cell line, and injection beta-amyloid peptide25-35 (Abeta25-35) to the cerebral ventricle in ovariectomy (OVX) rats. MTT assay, LDH assay, and Hoechst 33258 staining were used to detect the effect of (-) clausenamide on the toxicity of okadaic acid in SH-SY5Y cell line. The animal model was induced by ovariectomized and injection of Abeta25-35 in the cerebroventricle of rats. The effect of (-) clausenamide on learning and memory deficiency was observed by step-through test. Electron microscope, Nissl body staining, and HE staining were used to examine the morphological changes in hippocampus and cerebral cortex neurons. Pretreatment of (-) clausenamide and LiCl decreased the rate of cell death from MTT, LDH release, and apoptosis from Hoechst 33258 staining in SH-SY5Y cell line. The step-through tests showed (-) clausenamide could improve the ability of learning and memory. The Nissl body staining and HE staining experiments also showed the neuroprotective effects of (-) clausenamide on the neurons of hippocampus and cerebral cortex. (-) Clausenamide has the protective effects against the neurotoxicity induced by okadaic acid and Abeta25-35. Topics: Amyloid beta-Peptides; Animals; Apoptosis; Cell Line, Tumor; Cell Survival; Cerebral Cortex; Clausena; Drugs, Chinese Herbal; Female; Hippocampus; Humans; L-Lactate Dehydrogenase; Lactams; Learning; Lignans; Memory Disorders; Neuroblastoma; Neurons; Neuroprotective Agents; Okadaic Acid; Ovariectomy; Peptide Fragments; Plants, Medicinal; Rats; Rats, Sprague-Dawley | 2007 |
Olanzapine attenuates the okadaic acid-induced spatial memory impairment and hippocampal cell death in rats.
It is hypothesized that olanzapine, an atypical antipsychotic drug, has beneficial effects on cognitive impairment and neuropathological changes in treating neurodegenerative diseases. In the present study, we investigated the effects of chronic administration of olanzapine on the spatial memory impairment and hippocampal cell death induced by the direct injection of okadaic acid (OA), a potent neurotoxin, into the rat hippocampus. After being pretreated with olanzapine (0.5 or 2 mg/kg/day, i.p.) for 2 weeks, the rats were unilaterally microinjected with OA (100 ng) into the hippocampus, and then were continuously administrated with olanzapine for an additional week The rats were trained on a spatial memory task in an eight-arm radial maze before OA administration, and tested on the same task 18 h after the last olanzapine injection. After the behavioral test, the rats were killed for Nissl staining and terminal deoxynucleutidyl transferase-mediated biotinylated UTP nick end labeling staining. OA significantly induced spatial memory impairment, and caused pyramidal cell loss in the CAI and apoptotic cell death in the hippocampus. Olanzapine significantly attenuated OA-induced spatial memory impairment and the OA-induced neuropathological changes in the hippocampus. These findings suggest that olanzapine may have therapeutic effects in treatment of cognitive impairment and neuropathological changes of schizophrenia and other neurodegenerative diseases. Topics: Analysis of Variance; Animals; Behavior, Animal; Benzodiazepines; Cell Count; Cell Death; Dose-Response Relationship, Drug; Drug Interactions; Hippocampus; In Situ Nick-End Labeling; Male; Maze Learning; Memory Disorders; Microinjections; Motor Activity; Okadaic Acid; Olanzapine; Rats; Rats, Sprague-Dawley; Selective Serotonin Reuptake Inhibitors; Spatial Behavior; Statistics as Topic | 2005 |
Injection of okadaic acid into the meynert nucleus basalis of rat brain induces decreased acetylcholine level and spatial memory deficit.
Abnormal hyperphosphorylation of tau and cholinergic deficit occur in the early stage of Alzheimer's disease (AD) and relate to the dementia symptom. Hyperphosphorylation of tau, neurofilament (NF) and other proteins in AD brain appears to be caused by a down-regulation of protein phosphatase 2A (PP2A), but the mechanism leading to cholinergic deficit is still unknown. In this study, we selectively inhibited PP2A by injection of okadaic acid (OA) into the Meynert nucleus basalis of rats. We found that injection of OA induced hyperphosphorylation of tau and NF and decreased acetylcholine (ACh) level in the nucleus basalis of Meynert. These alterations were accompanied by spatial memory deficit in OA-injected rats. We also demonstrated that the OA-induced ACh reduction may be due to a failure of intraneuronal transport of choline acetyltransferase (ChAT) from cell body to the neuronal terminals rather than an alteration of activity of ChAT or acetylcholinesterase. This study suggests that a down-regulation of PP2A may underlie both abnormal hyperphosphorylation of cytoskeletal proteins leading to neurofibrillary degeneration and cholinergic deficiency in AD. Topics: Acetylcholine; Animals; Basal Nucleus of Meynert; Male; Maze Learning; Memory Disorders; Okadaic Acid; Rats; Rats, Sprague-Dawley | 2004 |
Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats.
We investigated the effects of okadaic acid (OA), a specific inhibitor of protein phosphatases 1 and 2A, on spatial memory and neuronal survival in rats. Rats were initially trained on a spatial memory task in an eight arm radial maze. Spatial reference and working memory was impaired 1 day after the unilateral microinjection of OA into the dorsal hippocampus. The impairment was transient, and had disappeared by the following day. In contrast, neurodegeneration induced by OA was persistent and extended to the contralateral side 13 days after the injection. These results suggest that OA causes spatial memory impairment and neurodegeneration when injected directly into the hippocampus. Our findings also indicate dissociation between memory impairment and neurodegeneration induced by OA. Topics: Animals; Cell Count; Enzyme Inhibitors; Hippocampus; Male; Maze Learning; Memory; Memory Disorders; Mitogen-Activated Protein Kinases; Nerve Degeneration; Neurons; Neurotoxins; Okadaic Acid; Phosphoprotein Phosphatases; Phosphorylation; Pyramidal Cells; Rats; Rats, Wistar; Space Perception | 2001 |
The impairment of long-term memory formation by the phosphatase inhibitor okadaic acid.
While there is considerable evidence that protein kinase activity is involved in memory formation, there has been, as yet, no direct investigation of a role for protein phosphatases. However, phosphatases have been implicated in the effects of the activation of glutamate receptors of the NMDA type, in long-term depression, and in the regulation of transmitter release and membrane ion channel activities, phenomena which have been shown to be possibly involved in cellular memorial processes. In the present paper, inhibition of protein phosphatase by 0.5 nM okadaic acid, a selective inhibitor of phosphatases 1 and 2A, is demonstrated to prevent memory consolidation in day-old chicks trained on a single trial passive avoidance task. Retention losses first occurred after 30 min post-learning, at an intermediate stage of memory formation preceding a protein synthesis-dependent long-term stage. It is suggested that protein phosphatase activity is involved in precursor processes to long-term memory consolidation. Topics: Animals; Avoidance Learning; Chickens; Dose-Response Relationship, Drug; Drug Administration Schedule; Ethers, Cyclic; Male; Memory Disorders; Okadaic Acid; Phosphoprotein Phosphatases; Random Allocation; Retention, Psychology; Time Factors | 1995 |
Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A.
Alzheimer's disease is histopathologically characterized by neurofibrillary tangles, formed by the abnormally high phosphorylated tau protein, and senile plaques which largely consist of the beta/A4-amyloid peptide. Metabolism of the amyloid precursor protein and its processing into beta/A4-amyloid is regulated by protein phosphorylation. Thus, an imbalance between protein phosphorylation and dephosphorylation might be crucial for the development of the molecular hallmarks of Alzheimer's disease. We report here that chronic infusion into rat brain ventricles of okadaic acid, a specific inhibitor of the serine/threonine protein phosphatases 1 and 2A, results in a severe memory impairment, accompanied by a paired helical filament-like phosphorylation of tau protein and the formation of beta/A4-amyloid containing plaque-like structures in gray and white matter areas. Topics: Amyloid beta-Peptides; Animals; Brain; Ethers, Cyclic; Female; Injections, Intraventricular; Memory Disorders; Okadaic Acid; Phosphoric Monoester Hydrolases; Phosphorylation; Rats; Rats, Wistar; tau Proteins; Time Factors | 1995 |