okadaic-acid and Leishmaniasis--Visceral

okadaic-acid has been researched along with Leishmaniasis--Visceral* in 3 studies

Other Studies

3 other study(ies) available for okadaic-acid and Leishmaniasis--Visceral

ArticleYear
Lymph node cells from BALB/c mice with chronic visceral leishmaniasis exhibiting cellular anergy and apoptosis: involvement of Ser/Thr phosphatase.
    Apoptosis : an international journal on programmed cell death, 2006, Volume: 11, Issue:11

    Visceral leishmaniasis (VL) produced in BALB/c mice through intracardial administration of Leishmania donovani amastigotes was accompanied by hepatosplenomegaly with high organ parasite load and lymphadenopathy when followed up to 4-months or so. To elucidate the mechanism of immunosuppression associated with VL, we report here progressive impairment of the proliferative response of lymph node cells (lymphocytes) from infected animals (I-LNC) to in vitro stimulation with the combination of phorbol 12-myristate 13-acetate (PMA) and ionomycin (Io) that could be related to the downregulation of PKC and MAP kinase (ERK 1/2) activation process. Further, pretreatment of I-LNC with the protein phosphatase inhibitor okadaic acid (OA), but not with calyculin A or sodium orthovanadate, significantly restored their proliferative response as well as PMA-induced activation of PKC. A population of LNC (primarily T-lymphocytes) from chronically infected animals was shown to undergo apoptosis, the number of which increased considerably following PMA+ Io stimulation. The apoptotic pathway, which was followed through binding of cells to Annexin V, activation of caspase-3 and fragmentation of DNA, involved destabilization of mitochondria, probably as a result of downregulation of PKC and Bcl-2. Interestingly, prior incubation of I-LNC with OA reversed the state of cell cycle arrest (anergy) and apoptosis through progression of cells from G0/G1 to S and G2/M phases with transcriptional activation of IL-2 and IL-2R genes. Our results suggest that the cellular (immune) dysfunction in VL could be attributed to dephosphorylation of key molecules in the T-lymphocyte signaling pathway by Ser/Thr phosphatase leading to their inactivation.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cell Proliferation; Chronic Disease; Clonal Anergy; Cricetinae; Disease Models, Animal; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Ionomycin; Ionophores; Leishmania donovani; Leishmaniasis, Visceral; Lymph Nodes; Lymphocyte Activation; Lymphocytes; Mice; Mice, Inbred BALB C; Okadaic Acid; Phosphoprotein Phosphatases; Protein Kinase C; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Tetradecanoylphorbol Acetate

2006
Immunosuppression in hamsters with progressive visceral leishmaniasis is associated with an impairment of protein kinase C activity in their lymphocytes that can be partially reversed by okadaic acid or anti-transforming growth factor beta antibody.
    Infection and immunity, 2003, Volume: 71, Issue:5

    Progressive visceral infection of golden hamsters by Leishmania donovani amastigotes led to gradual impairment of the proliferative responses of their splenic or peripheral blood mononuclear cells (SPMC or PBMC, respectively) to in vitro stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Io). Removal of macrophage-like adherent cells from SPMC or PBMC of infected animals (I-SPMC or I-PBMC) was earlier shown to restore almost completely their lymphoproliferative responses to PMA plus Io. The present study was directed to evaluate the status of protein kinase C (PKC), a molecule(s) known to play a key role in the lymphoproliferative process. Our results demonstrate that PKC activities (Ca(2+), phosphatidyl serine, and diacyl glycerol dependent) in the cytosolic fraction of untreated nonadherent I-SPMC or I-PBMC as well as in the membrane fraction of PMA-treated cells were decreased significantly relative to those for normal controls. However, removal of adherent cells from I-SPMC or I-PBMC and subsequent overnight in vitro cultivation of nonadherent cells (lymphocytes) resulted in significant restoration of PKC activity in the cytosolic or membrane fraction of untreated or PMA-treated cells, respectively. Partial, though significant, restoration of PKC activity could also be achieved in the membrane fraction of PMA-treated cells following overnight in vitro treatment of I-SPMC or I-PBMC with the Ser/Thr phosphatase inhibitor okadaic acid (OA) or an anti-transforming growth factor beta (anti-TGF-beta) neutralizing antibody. These results correlated well with the ability of OA or the anti-TGF-beta antibody to restore the lymphoproliferative response of I-SPMC or I-PBMC following stimulation with PMA plus Io. Interestingly enough, immunoblotting experiments failed to show any reduction in the level or translocation (following PMA treatment) of conventional PKC isoforms in the SPMC or PBMC of infected animals compared to those of normal controls. The results presented in this study suggest that the adherent cells generated in the SPMC or PBMC of infected animals exert a suppressive effect on the proliferative response of nonadherent cells (lymphocytes) which is likely to be mediated through the downregulation of the activation pathway involving PKC and its downstream molecules such as mitogen-activated protein kinases. Further, the observed suppression of PKC activity and subsequent lymphoproliferative responses can be attributed to alternati

    Topics: Animals; Cricetinae; Immune Tolerance; Immunoblotting; Leishmaniasis, Visceral; Lymphocyte Activation; Lymphocytes; Okadaic Acid; Phosphorylation; Protein Kinase C; Tetradecanoylphorbol Acetate; Transforming Growth Factor beta

2003
Effect of Leishmania donovani lipophosphoglycan on ornithine decarboxylase activity in macrophages.
    The Journal of parasitology, 2001, Volume: 87, Issue:5

    Lipophosphoglycan (LPG), a major surface molecule from Leishmania donovani, stimulated ornithine decarboxylase (ODC) activity in macrophages in a dose- and time-dependent manner. LPG stimulated the rapid increase in ODC activity within 30 min after exposure, suggesting that the interaction of LPG with its receptor stimulated a specific signal transduction pathway. However, LPG-induced ODC activity was a transient event because 3 hr after exposure to LPG, no stimulation of ODC activity was detectable. ODC activity appeared to be coupled to the activation of protein kinase C (PKC) in macrophages, as activators of PKC caused a rapid increase in the ODC activity. Macrophages pretreated with LPG for 1 hr became unresponsive to subsequent stimulation by the PKC activators 1-oleoyl-2-acetyl-glycerol and the calcium ionophore A23187. In contrast, the ability of macrophages to express ODC activity in response to the cyclic AMP analogue dibutyryl cyclic AMP was not impaired by LPG.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Anti-Bacterial Agents; Bucladesine; Calcimycin; Diglycerides; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Glycosphingolipids; Leishmania donovani; Leishmaniasis, Visceral; Lipopolysaccharides; Macrophages; Mice; Okadaic Acid; Ornithine Decarboxylase; Signal Transduction; Staurosporine; Tetradecanoylphorbol Acetate; Time Factors

2001