okadaic-acid has been researched along with Ischemia* in 2 studies
2 other study(ies) available for okadaic-acid and Ischemia
Article | Year |
---|---|
Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion.
Oxidative stress after cerebral ischemia and reperfusion activates extracellular signal-regulated kinases (ERK) in brain. However, the mechanism of this activation has not been elucidated. We have previously reported that in an in vitro model of oxidative stress in immature cortical neuronal cultures, the inhibition of ERK phosphatase activity contributes to ERK1/2 activation and subsequent neuronal toxicity. This study examined whether ERK activation was associated with altered activity of ERK phosphatases in a rat cardiac arrest model. Rats in experimental groups were subjected to asphyxial cardiac arrest for 8 min and then resuscitated for 30 min. Significant ERK activation was detected in both cortex and hippocampus following ischemia/reperfusion by immunoblotting. ERK phosphatase activity was reversibly inhibited in cerebral cortex but not affected in hippocampus following ischemia/reperfusion. MEK1/2 was activated in both cerebral cortex and hippocampus following ischemia/reperfusion. Using a specific inhibitor of protein phosphatase 2A (PP2A), okadaic acid (OA), we have identified PP2A to be the major ERK phosphatase that is responsible for regulating ERK activation in ischemic brain tissues. Orthovanadate inhibited ERK phosphatase activity in brain tissues, suggesting that tyrosine phosphatases and dual specificity phosphatases may also contribute to the ERK phosphatase activity in brain tissues. Together, these data implicate ERK phosphatase in the regulation of ERK activation in distinct brain regions following global ischemia. Topics: Animals; Blotting, Western; Brain; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Ischemia; Male; Okadaic Acid; Phosphoric Monoester Hydrolases; Rats; Rats, Sprague-Dawley; Reperfusion | 2007 |
Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostriecin.
The gap junction protein connexin-43 (Cx43) exists mainly in the phosphorylated state in the normal heart, while ischemia induces dephosphorylation. Phosphatase(s) involved in cardiac Cx43 dephosphorylation have not as yet been identified. We examined the acute effects of ischemia on the dephosphorylation of the gap junction protein connexin-43 in isolated adult cardiomyocytes and isolated perfused hearts. In addition we tested the effectiveness of protein phosphatase 1 and 2A (PP1/2A) inhibitors in preventing Cx43 dephosphorylation. In both models, significant accumulation of the 41 kDa non-phosphorylated Cx43, accompanied by decreased relative levels of the 43-46 kDa phosphorylated Cx43, was observed at 30 min of ischemia. Okadaic acid decreased ischemia-induced Cx43 dephosphorylation; it also decreased the accumulation of non-phosphorylated Cx43 at the intercalated discs of myocytes in the whole heart. Calyculin A, but not fostriecin, also decreased ischemia-induced Cx43 dephosphorylation in isolated cardiomyocytes. It is concluded that isolated adult myocytes respond to ischemia in a manner similar to whole hearts and that ischemia-induced dephosphorylation of Cx43 is mediated, at least in part, by PP1-like phosphatase(s). Topics: Alkenes; Animals; Blotting, Western; Cells, Cultured; Connexin 43; Gap Junctions; Gene Expression; Ischemia; Marine Toxins; Myocytes, Cardiac; Okadaic Acid; Oxazoles; Phosphorylation; Polyenes; Pyrones; Rats; Rats, Sprague-Dawley | 2003 |