okadaic-acid has been researched along with Huntington-Disease* in 2 studies
2 other study(ies) available for okadaic-acid and Huntington-Disease
Article | Year |
---|---|
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies.
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75(NTR)) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75(NTR) in several HD models, as well as in HD human brain. Our data demonstrates a p75(NTR)/TrkB imbalance in the striatum of two different HD mouse models, Hdh(Q111/111) homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75(NTR) levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75(NTR) against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75(NTR)/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75(NTR) and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD. Topics: Animals; Apoptosis; Brain-Derived Neurotrophic Factor; Cell Line; Corpus Striatum; Disease Models, Animal; Enzyme Inhibitors; Gene Knock-In Techniques; Humans; Huntingtin Protein; Huntington Disease; JNK Mitogen-Activated Protein Kinases; Mice; N-Methylaspartate; Nerve Tissue Proteins; Nuclear Proteins; Okadaic Acid; Phosphorylation; Protein Binding; Protein Phosphatase 1; Proto-Oncogene Proteins c-akt; Putamen; Receptor, Nerve Growth Factor; Receptor, trkB; RNA Interference; RNA, Small Interfering; Signal Transduction | 2013 |
Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells.
We investigated the role of neurofilament (NF) proteins in Alzheimer disease (AD) neurofibrillary degeneration. The levels and degree of phosphorylation of NF proteins in AD neocortex were determined by Western blots developed with a panel of phosphorylation-dependent NF antibodies. Levels of all three NF subunits and the degree of phosphorylation of NF-H and NF-M were significantly increased in AD as compared to Huntington disease brains used as control tissue. The increase in the levels of NF-H and NF-M was 1.7- and 1.5-fold (P<0.01) as determined by monoclonal antibody SMI33, and was 1.6-fold (P<0.01) in NF-L using antibody NR4. The phosphorylation of NF-H and NF-M in AD was increased respectively at the SMI31 epitope by 1.6- and 1.9-fold (P<0.05) and at the SMI33 epitope by 2.7- and 1.3-fold (P<0.01 and P<0.05). Essentially similar effects were observed in SY5Y human neuroblastoma cells when treated with okadaic acid, an inhibitor of protein phosphatase (PP)-2A and -1. This is the first biochemical evidence which unambiguously demonstrates the hyperphosphorylation and the accumulation of NF subunits in AD brain, and shows that the inhibition of PP-2A/PP-1 activities can lead to the hyperphosphorylation of NF-H and NF-M subunits. Topics: Aged; Alzheimer Disease; Brain; Case-Control Studies; Enzyme Inhibitors; Humans; Huntington Disease; Middle Aged; Neuroblastoma; Neurofilament Proteins; Okadaic Acid; Phosphoprotein Phosphatases; Phosphorylation; Protein Subunits; Subcellular Fractions; Tumor Cells, Cultured | 2001 |