okadaic-acid and Cognition-Disorders

okadaic-acid has been researched along with Cognition-Disorders* in 3 studies

Other Studies

3 other study(ies) available for okadaic-acid and Cognition-Disorders

ArticleYear
Neuroprotective Studies of Evodiamine in an Okadaic Acid-Induced Neurotoxicity.
    International journal of molecular sciences, 2021, May-19, Volume: 22, Issue:10

    Alzheimer's disease (AD) is the most common neurodegenerative disease, and it manifests as progressive memory loss and cognitive decline. However, there are no effective therapies for AD, which is an urgent problem to solve. Evodiamine, one of the main bioactive ingredients of. A protein phosphatase 2A inhibitor, okadaic acid (OA), was used to induce tau phosphorylation to mimic AD-like models in neuronal cells. Protein expression and cell apoptosis were detected using Western blotting and flow cytometry, respectively. Spatial memory/cognition was assessed using water maze, passive avoidance tests, and magnetic resonance imaging assay in OA-induced mice models, and brain slices were evaluated further by immunohistochemistry.. The results showed that evodiamine significantly reduced the expression of phosphor-tau, and further decreased tau aggregation and neuronal cell death in response to OA treatment. This inhibition was found to be via the inhibition of glycogen synthase kinase 3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase pathways. In vivo results indicated that evodiamine treatment ameliorated learning and memory impairments in mice, whereas Western blotting and immunohistochemical analysis of the mouse brain also confirmed the neuroprotective effects of evodiamine.. Evodiamine can decrease the neurotoxicity of tau aggregation and exhibit a neuroprotective effect. Our results demonstrate that evodiamine has a therapeutic potential for AD treatment.

    Topics: Alzheimer Disease; Animals; Apoptosis; Brain; Cell Line; Cognition; Cognition Disorders; Disease Models, Animal; Humans; Male; Maze Learning; Mice; Mice, Inbred ICR; Neurodegenerative Diseases; Neurons; Neuroprotection; Neuroprotective Agents; Okadaic Acid; Phosphorylation; Quinazolines; Spatial Memory; tau Proteins; Tauopathies

2021
Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia.
    Behavioural brain research, 2012, Jan-15, Volume: 226, Issue:2

    Several types of animal models have been developed to investigate Alzheimer's disease (AD). Okadaic acid (OA), a potent inhibitor of phosphatases 1 and 2A, induces characteristics that resemble AD-like pathology. Memory impairment induced by intra-hippocampal injection of OA has been reported, accompanied by remarkable neuropathological changes including hippocampal neurodegeneration, a paired helical filament-like phosphorylation of tau protein, and formation of β-amyloid containing plaque-like structures. Rats were submitted to bilateral intrahippocampal okadaic acid-injection (100 ng) and, 12 days after the surgery, behavioral and biochemical tests were performed. Using this model, we evaluated spatial cognitive deficit and neuroglial alterations, particularly astroglial protein markers such as glial fibrillary acidic protein (GFAP) and S100B, metabolism of glutamate, oxidative parameters and alterations in MAPKs. Our results indicate significant hippocampal changes, including increased GFAP, protein oxidation, and phosphorylation of p38(MAPK); and decreases in glutathione content, transporter EAAT2/GLT-1, and glutamine synthetase activity as well as a decrease in cerebrospinal fluid S100B. No alterations were observed in glutamate uptake activity and S100B content. In conclusion, the OA-induced model of dementia caused spatial cognitive deficit and oxidative stress in this model and, for the first time to our knowledge, specific astroglial alterations. Findings contribute to understanding diseases accompanied by cognitive deficits and the neural damage induced by AO administration.

    Topics: Animals; Cognition Disorders; Dementia; Disease Models, Animal; Excitatory Amino Acid Transporter 2; Glial Fibrillary Acidic Protein; Glutamate-Ammonia Ligase; Glutamic Acid; Glutathione; Hippocampus; Humans; Male; Microinjections; Mitogen-Activated Protein Kinases; Nerve Growth Factors; Neuroglia; Okadaic Acid; Oxidation-Reduction; Oxidative Stress; Rats; Rats, Wistar; S100 Calcium Binding Protein beta Subunit; S100 Proteins

2012
An okadaic acid-induced model of tauopathy and cognitive deficiency.
    Brain research, 2010, Nov-04, Volume: 1359

    Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes cognitive and behavioral deterioration in the elderly. Neurofibrillary tangles (NFTs) are one of the pathological hallmarks of AD that has been shown to correlate positively with the severity of dementia in the neocortex of AD patients. In an attempt to characterize an in vivo AD tauopathy model, okadaic acid (OA), a protein phosphatase inhibitor, was microinfused into the right lateral dorsal hippocampus area of ovariectomized adult rat. Cognitive deficiency was seen in OA-treated rats without a change in motor function. Both silver staining and immunohistochemistry staining revealed that OA treatment induces NFTs-like conformational changes in both the cortex and hippocampus. Phosphorylated tau as well as cyclin-dependent kinase 5 (cdk5) and its coactivator, p25, were significantly increased in these regions of the brain. Oxidative stress was also increased with OA treatment as measured by protein carbonylation and lipid peroxidation. These data suggest that the unilateral microinfusion of OA into the dorsal hippocampus causes cognitive deficiency, NFTs-like pathological changes, and oxidative stress as seen in AD pathology via tau hyperphosphorylation caused by inhibition of protein phosphatases.

    Topics: Alzheimer Disease; Animals; Blotting, Western; Brain; Cognition Disorders; Disease Models, Animal; Enzyme Inhibitors; Female; Immunohistochemistry; Injections, Intraventricular; Maze Learning; Neurofibrillary Tangles; Okadaic Acid; Ovariectomy; Oxidative Stress; Phosphorylation; Rats; Rats, Sprague-Dawley; Tauopathies

2010