okadaic-acid and Brain-Ischemia

okadaic-acid has been researched along with Brain-Ischemia* in 4 studies

Other Studies

4 other study(ies) available for okadaic-acid and Brain-Ischemia

ArticleYear
Kidins220 accumulates with tau in human Alzheimer's disease and related models: modulation of its calpain-processing by GSK3β/PP1 imbalance.
    Human molecular genetics, 2013, Feb-01, Volume: 22, Issue:3

    Failures in neurotrophic support and signalling play key roles in Alzheimer's disease (AD) pathogenesis. We previously demonstrated that downregulation of the neurotrophin effector Kinase D interacting substrate (Kidins220) by excitotoxicity and cerebral ischaemia contributed to neuronal death. This downregulation, triggered through overactivation of N-methyl-D-aspartate receptors (NMDARs), involved proteolysis of Kidins220 by calpain and transcriptional inhibition. As excitotoxicity is at the basis of AD aetiology, we hypothesized that Kidins220 might also be downregulated in this disease. Unexpectedly, Kidins220 is augmented in necropsies from AD patients where it accumulates with hyperphosphorylated tau. This increase correlates with enhanced Kidins220 resistance to calpain processing but no higher gene transcription. Using AD brain necropsies, glycogen synthase kinase 3-β (GSK3β)-transgenic mice and cell models of AD-related neurodegeneration, we show that GSK3β phosphorylation decreases Kidins220 susceptibility to calpain proteolysis, while protein phosphatase 1 (PP1) action has the opposite effect. As altered activities of GSK3β and phosphatases are involved in tau aggregation and constitute hallmarks in AD, a GSK3β/PP1 imbalance may also contribute to Kidins220 decreased clearance, accumulation and hampered neurotrophin signalling from early stages of the disease pathogenesis. These results encourage searches for mutations in Kidins220 gene and their possible associations to dementias. Finally, our data support a model where the effects of excitotoxicity drastically differ when occurring in cerebral ischaemia versus progressively sustained toxicity along AD progression. The striking differences in Kidins220 stability resulting from chronic versus acute brain damage may also have important implications for the therapeutic intervention of neurodegenerative disorders.

    Topics: Aged; Aged, 80 and over; Alzheimer Disease; Animals; Brain Ischemia; Calpain; Cell Death; Cells, Cultured; Disease Models, Animal; Down-Regulation; Female; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; HEK293 Cells; Humans; Male; Membrane Proteins; Mice; Mice, Transgenic; Nerve Growth Factors; Nerve Tissue Proteins; Neurodegenerative Diseases; Neurons; Okadaic Acid; Phosphorylation; Protein Phosphatase 1; Proteolysis; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Signal Transduction; tau Proteins

2013
Upregulation of protein phosphatase 2A and NR3A-pleiotropic effect of simvastatin on ischemic stroke rats.
    PloS one, 2012, Volume: 7, Issue:12

    Ca(2+) influxes are regulated by the functional state of N-methyl-D-aspartate receptors (NMDARs). Dephosphorylation of NMDARs subunits decreases Ca(2+) influxes. NR3, a novel subunit of NMDARs, also decreases Ca(2+) influxes by forming new NMDARs with NR1 and NR2. It is meaningful to uncover whether protein phosphatase 2A (PP2A) and NR3A play a role in the protective effect of Simvastatin on ischemic stroke. In the present study, the Sprague-Dawley rats were pretreated with Simvastatin for 7 days before middle cerebral artery occlusion was performed to mimic ischemic stroke. The results showed that Simvastatin decreased brain ischemic infarct area significantly while increasing the expression levels of PP2A and NR3A, thus dephosphorylating the serine sites of NR1 (ser896 and ser897) along with increased enzymatic activities of PP2A. The protein levels of NR3A decreased as the enzymatic activities of PP2A were inhibited by okadaic acid. The results indicated that Simvastatin could protect the cerebrum from ischemic injury through a signaling mechanism involving elevated levels of PP2A and NR3A, and that PP2A might involve in the regulatory mechanism of NR3A expression.

    Topics: Animals; Brain Ischemia; CA1 Region, Hippocampal; Gene Expression Regulation; Genetic Pleiotropy; Infarction, Middle Cerebral Artery; Male; Okadaic Acid; Phosphorylation; Protein Phosphatase 2; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Simvastatin; Stroke; Up-Regulation

2012
ATF-2 phosphorylation in apoptotic neuronal death.
    Brain research. Molecular brain research, 1998, Dec-10, Volume: 63, Issue:1

    Activating transcription factor (ATF-2) is a basic region-leucine zipper transcription factor that can mediate a diverse range of transcriptional responses including those generated by various forms of cellular stress. Activation of ATF-2 in response to these stimuli requires post-translational modification, in particular the phosphorylation of Thr69 and Thr71. To investigate whether ATF-2 activation also has a role in neuronal apoptosis, immunocytochemistry using a phospho-specific ATF-2 (Thr71) antibody was carried out in the 21 day old rat brain following a unilateral hypoxic-ischemic (HI) insult and PC12 cells cultured in the presence of okadaic acid. In both models a dramatic increase in phosphorylated ATF-2 was found within cells undergoing apoptosis.

    Topics: Activating Transcription Factor 2; Animals; Antibody Specificity; Apoptosis; Brain Ischemia; Cyclic AMP Response Element-Binding Protein; Enzyme Inhibitors; In Situ Nick-End Labeling; Leucine Zippers; Neurons; Okadaic Acid; PC12 Cells; Phosphorylation; Proto-Oncogene Proteins c-jun; Rats; Rats, Wistar; Transcription Factors

1998
Alterations in tau phosphorylation in rat and human neocortical brain slices following hypoxia and glucose deprivation.
    Experimental neurology, 1998, Volume: 154, Issue:2

    Tau is a microtubule-associated protein which is regulated by phosphorylation. Highly phosphorylated tau does not bind microtubules and is the main component of the paired helical filaments seen in Alzheimer's and related neurodegenerative diseases. Recent reports suggested that patterns of tau phosphorylation changed following ischemia and/or reperfusion in vivo. We used an in vitro model employing rat and human neocortical slices to investigate changes in tau phosphorylation which accompany oxygen and glucose deprivation. Western blotting with polyclonal and phosphorylation-sensitive Tau-1 monoclonal antisera was used to monitor changes in tau which accompanied conditions of oxygen and glucose deprivation and reestablishment of these nutrients. In vitro hypoglycemia/hypoxia caused tau to undergo significant dephosphorylation in both rat and human neocortical slices after 30 and 60 min of deprivation. This dephosphorylation was confirmed using immunoprecipitation experiments after radiolabeling tau and other proteins with 32Pi. Okadaic acid, a phosphatase inhibitor, was able to prevent tau dephosphorylation in both control and ischemic slices. Lubeluzole, a benzothiazole derivative with in vivo neuroprotective activity, did not significantly alter patterns of tau phosphorylation. Restoration of oxygen and glucose following varied periods of in vitro hypoxia/hypoglycemia (15-60 min) led to an apparent recovery in phosphorylated tau. These data suggest that tau undergoes a rapid, but reversible dephosphorylation following brief periods of in vitro hypoxia/hypoglycemia in brain slices and that changes in tau phosphorylation help determine the extent of recovery following oxygen and glucose deprivation.

    Topics: Animals; Brain Ischemia; Cell Hypoxia; Enzyme Inhibitors; Glucose; Humans; Hypoglycemia; Hypoxia, Brain; Male; Neocortex; Neuroprotective Agents; Okadaic Acid; Organ Culture Techniques; Phosphorylation; Piperidines; Precipitin Tests; Rats; Rats, Sprague-Dawley; tau Proteins; Temporal Lobe; Thiazoles

1998