okadaic-acid and Bone-Neoplasms

okadaic-acid has been researched along with Bone-Neoplasms* in 5 studies

Other Studies

5 other study(ies) available for okadaic-acid and Bone-Neoplasms

ArticleYear
Okadaic acid activates the PKR pathway and induces apoptosis through PKR stimulation in MG63 osteoblast-like cells.
    International journal of oncology, 2013, Volume: 42, Issue:6

    Double-stranded RNA-dependent protein kinase (PKR) is one of the players in the cellular antiviral responses and is involved in transcriptional stimulation through activation of NF-κB. Treatment of the human osteosarcoma cell line MG63 with the protein phosphatase inhibitor okadaic acid stimulated the expression and phosphorylation of IκBα, as judged from the results of real-time PCR and western blot analysis. We investigated the functional relationship between PKR and signal transduction of NF-κB by establishing PKR-K/R cells that produced a catalytically inactive mutant of PKR. Phosphorylation of eIF-2α, a substrate of PKR, was not stimulated by okadaic acid in the PKR-K/R cells, whereas okadaic acid induced phosphorylation of eIF-2α in MG63 cells. Phosphorylation of NF-κB in MG63 cells was stimulated by okadaic acid; however, okadaic acid did not induce phosphorylation of NF-κB in the PKR-K/R cells. Finally, okadaic acid-induced apoptosis was inhibited in the PKR-K/R cells. Our results suggest that okadaic acid-induced phosphorylation of IκBα was mediated by PKR kinase activity, thus, indicating the involvement of this kinase in the control mechanism governing the activation of NF-κB and induction of apoptosis.

    Topics: Apoptosis; Bone Neoplasms; Cell Line, Tumor; eIF-2 Kinase; Eukaryotic Initiation Factor-2; Humans; I-kappa B Proteins; Mutation; NF-kappa B; Okadaic Acid; Osteoblasts; Osteosarcoma; Phosphorylation; Signal Transduction

2013
Okadaic acid induces apoptosis through the PKR, NF-κB and caspase pathway in human osteoblastic osteosarcoma MG63 cells.
    Toxicology in vitro : an international journal published in association with BIBRA, 2011, Volume: 25, Issue:8

    Okadaic acid (OA) is the major component of diarrheic shellfish poisoning toxins and a potent inhibitor of protein phosphatase 1 and 2A. However, the underlying regulatory mechanisms involved in OA-induced cell death are not well understood. In the present study, we examined the effects of OA on apoptosis of MG63 cells by characterizing apoptotic morphological changes of the cells and DNA fragmentation. The roles of double-stranded RNA-dependent protein kinase (PKR), nuclear factor-κB (NF-κB) and caspase in OA-mediated apoptosis in MG63 cells were also examined. Results showed that OA induced cytotoxicity and apoptosis in MG63 cells at IC50 of 75 nM. A functional PKR pathway is required to induce apoptosis in response to OA treatment. Blockade of NF-κB by ammonium pyrrolidinedithiocarbamate (PDTC) resulted in down-regulation of apoptosis. The caspase-3 and caspase-8 inhibitors blocked apoptosis in MG63 cells. In conclusion, our results imply that OA can induce MG63 cell apoptosis through the PKR, NF-κB and caspase pathway.

    Topics: Apoptosis; Bone Neoplasms; Caspase 3; Caspase 8; Caspase Inhibitors; Cell Line, Tumor; Cell Survival; DNA Fragmentation; eIF-2 Kinase; Humans; Marine Toxins; NF-kappa B; Okadaic Acid; Oligopeptides; Osteosarcoma; Pyrrolidines; Thiocarbamates

2011
Differential inhibition of single and cluster type tumor cell migration.
    Anticancer research, 2009, Volume: 29, Issue:8

    For the control of tumor metastasis it is important to identify chemical compounds with antimigratory potency. Agents acting against single cell and cluster type migration are necessary for successful antimetastatic therapy. In the present study, the migration of HT-1080 fibrosarcoma cells and OSCORT osteosarcoma cells was compared in a Boyden chamber and in an extracellular matrix (ECM)-based three-dimensional cell culture (3-DCC) model system. The Boyden chamber offers a model of single tumor cell migration, whereas the 3-DCC model system demonstrates invasive growth in the form of a cluster. Since PD98059 (MEK inhibitor) exclusively reduced migration in the 3-DCC model, it may be plausible that the ERK/MAPK signaling pathway is essential for cluster type migration. Interestingly, single cell migration was stimulated upon blocking phosphatidylinositol 3-kinase (PI3K) and also p38-MAPK by treatment with LY294002 and SB203580 respectively. A remarkable reduction of single cell migration was observed following treatment with okadaic acid, a phosphatase 1 (PP1) and 2A (PP2A) inhibitor, which was rather intriguing. This study provided evidence that certain cytotoxic/cytostatic agents at appropriate concentrations were able to preferentially inhibit certain types of migration relative to cell proliferation. Single cell migration was selectively inhibited by taxol at very low subtoxic concentration, whereas 5-hexyl-2'-deoxyuridine (HUdR) exclusively inhibited the cluster type of migration. The borrelidin compound was able to inhibit both types of tumor cell migration, but single tumor cell migration was much less affected. It is interesting that migration was more reduced than proliferation by borrelidin, especially at the advanced growth stage. Taxol is recommended as an agent acting against single cell migration, as well as HUdR and borrelidin as leading compounds for developing antimetastatic drugs against cluster type migration.

    Topics: Adolescent; Bone Neoplasms; Cell Culture Techniques; Cell Movement; Cell Proliferation; Chromones; Deoxyuridine; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Fibrosarcoma; Flavonoids; Humans; Imidazoles; Male; Morpholines; Okadaic Acid; Osteosarcoma; p38 Mitogen-Activated Protein Kinases; Paclitaxel; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Pyridines; Signal Transduction; Tumor Cells, Cultured

2009
Effect of human granulocyte macrophage-colony stimulating factor on differentiation and apoptosis of the human osteosarcoma cell line SaOS-2.
    European journal of histochemistry : EJH, 2003, Volume: 47, Issue:4

    We investigated the effects of human granulocyte macrophage-colony stimulating factor (GM-CSF) on the relation between differentiation and apoptosis in SaOS-2 cells, an osteoblast-like cell line. To determine the relationship between these cellular processes, SaOS-2 cells were treated in vitro for 1, 7 and 14 days with 200 ng/mL GM-CSF and compared with untreated cells. Five nM insulin-like growth factor (IGF-I) and 30 nM okadaic acid were used as negative and positive controls of apoptosis, respectively. Effects on cell differentiation were determined by ECM (extracellular matrix) mineralization, morphology of some typical mature osteoblast differentiation markers, such as osteopontin and sialoprotein II (BSP-II), and production of bone ECM components such as collagen I. The results showed that treatment with GM-CSF caused cell differentiation accompanied by increased production of osteopontin and BSP-II, together with increased ECM deposition and mineralization. Flow cytometric analysis of annexin V and propidium iodide incorporation showed that GM-CSF up-regulated apoptotic cell death of SaOS-2 cells after 14 days of culture in contrast to okadaic acid, which stimulated SaOS-2 apoptosis only during the early period of culture. Endonucleolytic cleavage of genomic DNA, detected by "Aúladdering analysis"Aù, confirmed these data. The results suggest that GM-CSF induces osteoblastic differentiation and long-term apoptotic cell death of the SaOS-2 human osteosarcoma cell line, which in turn suggests a possible in vivo physiological role for GM-CSF on human osteoblast cells.

    Topics: Apoptosis; Biomarkers; Bone Neoplasms; Calcification, Physiologic; Cell Differentiation; Cell Line, Tumor; DNA, Neoplasm; Dose-Response Relationship, Drug; Extracellular Matrix; Flow Cytometry; Fluorescent Antibody Technique, Indirect; Granulocyte-Macrophage Colony-Stimulating Factor; Humans; Okadaic Acid; Osteoblasts; Osteopontin; Osteosarcoma; Sialic Acids; Sialoglycoproteins

2003
Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells.
    Calcified tissue international, 2001, Volume: 68, Issue:1

    Although quantitative measurement of skeletal alkaline phosphatase (sALP) activity in serum can provide an index of the rate of bone formation, the metabolic process that determines the release of sALP - from the surface of osteoblasts, into circulation-is unknown. The current studies were intended to examine the hypothesis that the release of sALP from human osteoblasts is a consequence of apoptotic cell death. We measured the release of sALP activity from human osteosarcoma (SaOS-2) cells and normal human bone cells, under basal conditions and in response to agents that increased apoptosis (TNF-a, okadiac acid) and agents that inhibit apoptosis (IGF-I, calpain, and caspase inhibitors). Apoptosis was determined by the presence of nucleosomes (histone-associated DNA) in the cytoplasm of the cells by using a commercial kit. The results of these studies showed that TNF-a and okadiac acid caused dose- and time-dependent increases in apoptosis in the SaOS-2 cells (r = 0.78 for doses of TNF-a and r = 0.93 for doses of okadiac acid, P <0.005 for each), with associated decreases in cell layer protein (P <0.05 for each) and concomitant increases in the release of sALP activity (e.g., r = 0.89 for TNF-a and r = 0.75 for okadiac acid, P <0.001 for each). In contrast, caspase and calpain inhibitors reduced apoptosis, increased cell layer protein, and decreased the release of sALP activity (P <0.05 for each). Exposure to IGF-I also decreased apoptosis, in a time- and dose-dependent manner (e.g., r = 0.93, P <0.001 for IGF-I doses), with associated proportional effects to increase cell layer protein (P <0.001) and decrease the release of sALP activity (P <0.001). IGF-I also inhibited the actions of TNF-a and okadiac acid to increase apoptosis and sALP release. The associations between apoptosis and sALP release were not unique to osteosarcoma (i.e., SaOS-2) cells, but also seen with osteoblast-line cells derived from normal human bone. Together, these data demonstrate that the release of sALP activity from human osteoblast-line cells in vitro is associated with, and may be a consequence of, apoptotic cell death. These findings are consistent with the general hypothesis that the appearance of sALP activity in serum may reflect the turnover of osteoblast-line cells.

    Topics: Alkaline Phosphatase; Apoptosis; Bone Neoplasms; Calpain; Cell Line, Tumor; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Insulin-Like Growth Factor I; Nucleosomes; Okadaic Acid; Osteoblasts; Osteogenesis; Osteosarcoma; Tumor Necrosis Factor-alpha

2001