obeticholic-acid and Metabolic-Syndrome

obeticholic-acid has been researched along with Metabolic-Syndrome* in 9 studies

Reviews

4 review(s) available for obeticholic-acid and Metabolic-Syndrome

ArticleYear
The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease.
    Journal of medicinal chemistry, 2020, 05-28, Volume: 63, Issue:10

    Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.

    Topics: Animals; Anticholesteremic Agents; Drug Delivery Systems; Drug Development; Humans; Hypoglycemic Agents; Lipid Metabolism; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Obesity; PPAR gamma; Protein Structure, Tertiary

2020
New therapeutic perspectives in non-alcoholic steatohepatitis.
    Gastroenterologia y hepatologia, 2018, Volume: 41, Issue:2

    Management of non-alcoholic steatohepatitis is focused on restitution of metabolic derangement, weight loss and drugs able to improve steatosis, ballooning and fibrosis. Life-style interventions based on Mediterranean diet and increasing physical activity are the first line therapy. In patients with unsuccessful life-style intervention several drugs are under development: agonist PPAR, agonist GLP-1R and agonist FXR together with drugs focussing on inflammation, ballooning, apoptosis and fibrosis. Bariatric surgery or advanced endoscopy are reserved for morbid obese without response to life-style intervention and weighting loss drugs.

    Topics: Bariatric Surgery; Chenodeoxycholic Acid; Clinical Trials as Topic; Combined Modality Therapy; Diet, Mediterranean; Dipeptidyl-Peptidase IV Inhibitors; Disease Management; Dyslipidemias; Endoscopy; Exercise Therapy; Gastrointestinal Microbiome; Glucagon-Like Peptide-1 Receptor; Humans; Insulin Resistance; MAP Kinase Kinase Kinase 5; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Obesity, Abdominal; Peroxisome Proliferator-Activated Receptors; Receptors, Cytoplasmic and Nuclear; Weight Loss

2018
Nonalcoholic fatty liver disease: Evolving paradigms.
    World journal of gastroenterology, 2017, Sep-28, Volume: 23, Issue:36

    In the last years new evidence has accumulated on nonalcoholic fatty liver disease (NAFLD) challenging the paradigms that had been holding the scene over the previous 30 years. NAFLD has such an epidemic prevalence as to make it impossible to screen general population looking for NAFLD cases. Conversely, focusing on those cohorts of individuals exposed to the highest risk of NAFLD could be a more rational approach. NAFLD, which can be diagnosed with either non-invasive strategies or through liver biopsy, is a pathogenically complex and clinically heterogeneous disease. The existence of metabolic as opposed to genetic-associated disease, notably including "lean NAFLD" has recently been recognized. Moreover, NAFLD is a systemic condition, featuring metabolic, cardiovascular and (hepatic/extra-hepatic) cancer risk. Among the clinico-laboratory features of NAFLD we discuss hyperuricemia, insulin resistance, atherosclerosis, gallstones, psoriasis and selected endocrine derangements. NAFLD is a precursor of type 2 diabetes (T2D) and metabolic syndrome and progressive liver disease develops in T2D patients in whom the course of disease is worsened by NAFLD. Finally, lifestyle changes and drug treatment options to be implemented in the individual patient are also critically discussed. In conclusion, this review emphasizes the new concepts on clinical and pathogenic heterogeneity of NAFLD, a systemic disorder with a multifactorial pathogenesis and protean clinical manifestations. It is highly prevalent in certain cohorts of individuals who are thus potentially amenable to selective screening strategies, intensive follow-up schedules for early identification of liver-related and extrahepatic complications and in whom earlier and more aggressive treatment schedules should be carried out whenever possible.

    Topics: Biomarkers; Chenodeoxycholic Acid; Diabetes Mellitus, Type 2; Diagnostic Imaging; Diet, Reducing; Dyslipidemias; Exercise Therapy; Humans; Hyperuricemia; Hypoglycemic Agents; Liver; Liver Function Tests; Liver Neoplasms; Mass Screening; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Prevalence; Risk Assessment; Risk Factors; Vitamin E

2017
FXR Agonists: From Bench to Bedside, a Guide for Clinicians.
    Digestive diseases and sciences, 2016, Volume: 61, Issue:12

    Topics: Animals; Azepines; Chenodeoxycholic Acid; Cholagogues and Choleretics; Cholestasis; Drug Evaluation, Preclinical; Gastrointestinal Agents; Hepatitis, Autoimmune; Humans; Hypertension, Portal; Indoles; Isoxazoles; Liver Cirrhosis, Alcoholic; Liver Cirrhosis, Biliary; Liver Diseases; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Receptors, Cytoplasmic and Nuclear; Ursodeoxycholic Acid

2016

Other Studies

5 other study(ies) available for obeticholic-acid and Metabolic-Syndrome

ArticleYear
Current management of non-alcoholic fatty liver disease.
    Revista da Associacao Medica Brasileira (1992), 2016, Volume: 62, Issue:9

    Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic accumulation of lipid in patients who do not consume alcohol in amounts generally considered harmful to the liver. NAFLD is becoming a major liver disease in Eastern countries and it is related to insulin resistance and metabolic syndrome. Treatment has focused on improving insulin sensitivity, protecting the liver from oxidative stress, decreasing obesity and improving diabetes mellitus, dyslipidemia, hepatic inflammation and fibrosis. Lifestyle modification involving diet and enhanced physical activity associated with the treatment of underlying metabolic are the main stain in the current management of NAFLD. Insulin-sensitizing agents and antioxidants, especially thiazolidinediones and vitamin E, seem to be the most promising pharmacologic treatment for non-alcoholic steatohepatitis, but further long-term multicenter studies to assess safety are recommended.

    Topics: Bariatric Surgery; Chenodeoxycholic Acid; Diet, Healthy; Exercise; Humans; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease

2016
Metabolic syndrome induces inflammation and impairs gonadotropin-releasing hormone neurons in the preoptic area of the hypothalamus in rabbits.
    Molecular and cellular endocrinology, 2014, Jan-25, Volume: 382, Issue:1

    Rabbits with high fat diet (HFD)-induced metabolic syndrome (MetS) developed hypogonadotropic hypogonadism (HH) and showed a reduced gonadotropin-releasing hormone (GnRH) immunopositivity in the hypothalamus. This study investigated the relationship between MetS and hypothalamic alterations in HFD-rabbits. Gonadotropin levels decreased as a function of MetS severity, hypothalamic gene expression of glucose transporter 4 (GLUT4) and interleukin-6 (IL-6). HFD determined a low-grade inflammation in the hypothalamus, significantly inducing microglial activation, expression and immunopositivity of IL-6, as well as GLUT4 and reduced immunopositivity for KISS1 receptor, whose mRNA expression was negatively correlated to glucose intolerance. Correcting glucose metabolism with obetcholic acid improved hypothalamic alterations, reducing GLUT4 and IL-6 immunopositivity and significantly increasing GnRH mRNA, without, however, preventing HFD-related HH. No significant effects at the hypothalamic level were observed after systemic anti-inflammatory treatment (infliximab). Our results suggest that HFD-induced metabolic derangements negatively affect GnRH neuron function through an inflammatory injury at the hypothalamic level.

    Topics: Animals; Antibodies, Monoclonal; Biomarkers; Chenodeoxycholic Acid; Diet, High-Fat; Gene Expression Regulation; Glucose Transporter Type 4; Gonadotropin-Releasing Hormone; Immunohistochemistry; Inflammation; Infliximab; Male; Metabolic Syndrome; Neurons; Preoptic Area; Rabbits; Receptors, G-Protein-Coupled; RNA, Messenger

2014
Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit.
    Molecular and cellular endocrinology, 2014, Mar-25, Volume: 384, Issue:1-2

    A pathogenic link between erectile dysfunction (ED) and metabolic syndrome (MetS) is now well established. Nonalcoholic steatohepatitis (NASH), the hepatic hallmark of MetS, is regarded as an active player in the pathogenesis of MetS-associated cardiovascular disease (CVD). This study was aimed at evaluating the relationship between MetS-induced NASH and penile dysfunction. We used a non-genomic, high fat diet (HFD)-induced, rabbit model of MetS, and treated HFD rabbits with testosterone (T), with the selective farnesoid X receptor (FXR) agonist obeticholic acid (OCA), or with the anti-TNFα mAb infliximab. Rabbits fed a regular diet were used as controls. Liver histomorphological and gene expression analysis demonstrated NASH in HFD rabbits. Several genes related to inflammation (including TNFα), activation of stellate cells, fibrosis, and lipid metabolism parameters were negatively associated to maximal acetylcholine (Ach)-induced relaxation in penis. When all these putative liver determinants of penile Ach responsiveness were tested as covariates in a multivariate model, only the association between hepatic TNFα expression and Ach response was confirmed. Accordingly, circulating levels of TNFα were increased 15-fold in HFD rabbits. T and OCA dosing in HFD rabbits both reduced TNFα liver expression and plasma levels, with a parallel increase of penile eNOS expression and responsiveness to Ach. Also neutralization of TNFα with infliximab treatment fully normalized HFD-induced hypo-responsiveness to Ach, as well as responsiveness to vardenafil, a phosphodiesterase type 5 inhibitor. Thus, MetS-induced NASH in HFD rabbits plays an active role in the pathogenesis of ED, likely through TNFα, as indicated by treatments reducing liver and circulating TNFα levels (T or OCA), or neutralizing TNFα action (infliximab), which significantly improve penile responsiveness to Ach in HFD rabbits.

    Topics: Acetylcholine; Animals; Antibodies, Monoclonal; Chenodeoxycholic Acid; Diet, High-Fat; Dietary Fats; Erectile Dysfunction; Fatty Liver; Gene Expression; Humans; Imidazoles; Infliximab; Liver; Male; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Penis; Phosphodiesterase 5 Inhibitors; Piperazines; Rabbits; Receptors, Cytoplasmic and Nuclear; Sulfones; Testosterone; Triazines; Tumor Necrosis Factor-alpha; Vardenafil Dihydrochloride

2014
Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit.
    The Journal of endocrinology, 2012, Volume: 212, Issue:1

    Metabolic syndrome (MetS) and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) are often associated. One of their common denominators is hypogonadism. However, testosterone supplementation is limited by concerns for potential prostatic side effects. The objective was to determine whether MetS-associated prostate alterations are prevented by testosterone supplementation. We used a previously described animal model of MetS, obtained by feeding male rabbits a high-fat diet (HFD) for 12 weeks. Subsets of HFD rabbits were treated with testosterone or with the farnesoid X receptor agonist INT-747. Rabbits fed a standard diet were used as controls. HFD-animals develop hypogonadism and all the MetS features: hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and visceral obesity. In addition, HFD-animals show a prostate inflammation. Immunohistochemical analysis demonstrated that HFD-induced prostate fibrosis, hypoxia, and inflammation. The mRNA expression of several proinflammatory (IL8, IL6, IL1β, and TNFα), T lymphocyte (CD4, CD8, Tbet, Gata3, and ROR γt), macrophage (TLR2, TLR4, and STAMP2), neutrophil (lactoferrin), inflammation (COX2 and RAGE), and fibrosis/myofibroblast activation (TGFβ, SM22α, αSMA, RhoA, and ROCK1/ROCK2) markers was significantly increased in HFD prostate. Testosterone, as well as INT-747, treatment prevented some MetS features, although only testosterone normalized all the HFD-induced prostate alterations. Interestingly, the ratio between testosterone and estradiol plasma level retains a significant, negative, association with all the fibrosis and the majority of inflammatory markers analyzed. These data highlight that testosterone protects rabbit prostate from MetS-induced prostatic hypoxia, fibrosis, and inflammation, which can play a role toward the development/progression of BPH/LUTS.

    Topics: Androgens; Animals; Biomarkers; Chenodeoxycholic Acid; Dietary Fats; Disease Models, Animal; Drug Evaluation, Preclinical; Estradiol; Fibrosis; Male; Metabolic Syndrome; Prostate; Prostatitis; Rabbits; Receptors, Cytoplasmic and Nuclear; Receptors, Steroid; RNA, Messenger; Testosterone

2012
Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome.
    The Journal of steroid biochemistry and molecular biology, 2012, Volume: 132, Issue:1-2

    In the male, metabolic syndrome (MetS) is associated to an increased risk of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). A recently established rabbit model of high fat diet (HFD)-induced MetS showed hypogonadism and the presence of prostate gland alterations, including inflammation, hypoxia and fibrosis. The present study investigated whether HFD-induced MetS might also alter bladder structure and function. Testosterone and the farnesoid X receptor (FXR) agonist INT-747, were evaluated for possible effects on HFD bladder. MetS rabbits develop bladder alterations, including fibrosis (reduced muscle/fiber ratio), hypoxia [2-fold increase as compared to regular diet (RD) group], low-grade inflammation (increased leukocyte infiltration and inflammatory markers) and RhoA/ROCK hyperactivity. Bladder strips from HFD rabbits, pre-contracted with carbachol, showed an overactive response to the selective ROCK inhibitor Y-27632. All these HFD-induced bladder alterations were partially blunted by testosterone and almost completely reverted by INT-747. Both treatments prevented some MetS features (glucose intolerance and visceral fat increase), thus suggesting that their effects on bladder could be ascribed to an improvement of the metabolic and/or hypogonadal state. However, a pathogenetic role for hypogonadism has been ruled out as GnRH analog-induced hypogonadal rabbits, fed a regular diet, did not show any detectable bladder alterations. In addition, INT-747 did not revert the MetS-induced hypogonadal state. FXR mRNA was highly expressed in rabbit bladder and positively associated with visceral fat increase. A direct effect of INT-747 on bladder smooth muscle was further suggested by inhibition of RhoA/ROCK-mediated activity by in vitro experiments on isolated cells. In conclusion, HFD-related MetS features are associated to bladder derangements, which are ameliorated by testosterone or INT-747 administration. INT-747 showed the most marked effects in counteracting MetS-related RhoA/ROCK overactivity, thus opening novel therapeutic opportunities for this drug.

    Topics: Androgens; Animals; Blood Glucose; Cell Movement; Chenodeoxycholic Acid; Cholesterol; Diet, High-Fat; Disease Models, Animal; Hypogonadism; Male; Metabolic Syndrome; Muscle Contraction; Myocytes, Smooth Muscle; Prostate; Rabbits; Receptors, Androgen; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Testosterone; Triglycerides; Triptorelin Pamoate; Urinary Bladder

2012