obeticholic-acid has been researched along with Malabsorption-Syndromes* in 2 studies
2 review(s) available for obeticholic-acid and Malabsorption-Syndromes
Article | Year |
---|---|
The Role of Bile Acids in Chronic Diarrhea.
Bile acids (BAs) are the central signals in enterohepatic communication, and they also integrate microbiota-derived signals into enterohepatic signaling. The tissue distribution and signaling pathways activated by BAs through natural receptors, farsenoid X receptor and G protein-coupled BA receptor 1 (GPBAR1, also known as Takeda G-coupled receptor 5), have led to a greater understanding of the mechanisms and potential therapeutic agents. BA diarrhea is most commonly encountered in ileal resection or disease, in idiopathic disorders (with presentation similar to functional diarrhea or irritable bowel syndrome with diarrhea), and in association with malabsorption such as chronic pancreatitis or celiac disease. Diagnosis of BA diarrhea is based on Se-homocholic acid taurine retention, 48-hour fecal BA excretion, or serum 7αC4; the latter being a marker of hepatic BA synthesis. BA diarrhea tends to be associated with higher body mass index, increased stool weight and stool fat, and acceleration of colonic transit. Biochemical markers of increased BA synthesis or excretion are available through reference laboratories. Current treatment of BA diarrhea is based on BA sequestrants, and, in the future, it is anticipated that farsenoid X receptor agonists may also be effective. The optimal conditions for an empiric trial with BA sequestrants as a diagnostic test are still unclear. However, such therapeutic trials are widely used in clinical practice. Some national guidelines recommend definitive diagnosis of BA diarrhea over empirical trial. Topics: Benzothiazoles; Bile Acids and Salts; Chenodeoxycholic Acid; Cholestenones; Cholestyramine Resin; Chronic Disease; Colesevelam Hydrochloride; Colestipol; Diarrhea; Diet, Fat-Restricted; Feces; Humans; Intestinal Mucosa; Irritable Bowel Syndrome; Isoxazoles; Liver; Malabsorption Syndromes; Receptors, Cytoplasmic and Nuclear; Sequestering Agents; Taurocholic Acid | 2020 |
Obeticholic acid for severe bile acid diarrhea with intestinal failure: A case report and review of the literature.
Bile acid diarrhea results from excessive amounts of bile acids entering the colon due to hepatic overexcretion of bile acids or bile acid malabsorption in the terminal ileum. The main therapies include bile acid sequestrants, such as colestyramine and colesevelam, which may be given in combination with the opioid receptor agonist loperamide. Some patients are refractory to conventional treatments. We report the use of the farnesoid X receptor agonist obeticholic acid in a patient with refractory bile acid diarrhea and subsequent intestinal failure. A 32-year-old woman with quiescent colonic Crohn's disease and a normal terminal ileum had been diagnosed with severe bile acid malabsorption and complained of watery diarrhea and fatigue. The diarrhea resulted in hypokalemia and sodium depletion that made her dependent on twice weekly intravenous fluid and electrolyte infusions. Conventional therapies with colestyramine, colesevelam, and loperamide had no effect. Second-line antisecretory therapies with pantoprazole, liraglutide, and octreotide also failed. Third-line treatment with obeticholic acid reduced the number of stools from an average of 13 to an average of 7 per 24 h and improved the patient's quality of life. The fluid and electrolyte balances normalized. The effect was sustained during follow-up for 6 mo with treatment at a daily dosage of 25 mg. The diarrhea worsened shortly after cessation of obeticholic acid. This case report supports the initial report that obeticholic acid may reduce bile acid production and improve symptoms in patients with bile acid diarrhea. Topics: Adult; Bile Acids and Salts; Chenodeoxycholic Acid; Crohn Disease; Diarrhea; Feedback, Physiological; Female; Fibroblast Growth Factors; Gastrointestinal Agents; Humans; Ileum; Intestinal Absorption; Liver; Malabsorption Syndromes; Receptors, Cytoplasmic and Nuclear | 2018 |