obeticholic-acid and Heart-Diseases

obeticholic-acid has been researched along with Heart-Diseases* in 2 studies

Reviews

1 review(s) available for obeticholic-acid and Heart-Diseases

ArticleYear
Nonalcoholic steatohepatitis, obesity, and cardiac dysfunction.
    Current opinion in endocrinology, diabetes, and obesity, 2018, Volume: 25, Issue:5

    Obesity and nonalcoholic steatohepatitis (NASH) are epidemiologically and pathophysiologically linked disorders. Here, we summarize the effect of obesity on NASH and how it has a cascading effect on cardiovascular dysfunction. We also review the current and emerging treatment options for NASH.. The link between NASH and cardiac dysfunction has been further delineated in recent studies demonstrating endothelial dysfunction, diastolic dysfunction, and increased coronary artery calcification in patients with known NASH. Standard treatment of obesity with lifestyle interventions including diet, exercise, and behavioral modification has been shown to improve NASH as well as reduce cardiovascular dysfunction. In addition to FDA-approved drugs like vitamin E and pioglitazone, several agents including NGM282, obeticholic acid, elafibranor, and liraglutide are currently being investigated for their therapeutic potential in NASH. Recent studies show that bariatric surgery results in significant improvement or resolution of NASH.. Obesity is a major factor in the development of nonalcoholic fatty liver disease (NAFLD) and its progression to steatohepatitis. Patients with NAFLD have a significant increase in cardiovascular disease risk. For biopsy-proven NASH, vitamin E and pioglitazone are the recommended medical treatments in addition to lifestyle modification.

    Topics: Bariatric Surgery; Chenodeoxycholic Acid; Diet; Exercise; Heart Diseases; Humans; Life Style; Non-alcoholic Fatty Liver Disease; Obesity; Pioglitazone; Vitamin E

2018

Other Studies

1 other study(ies) available for obeticholic-acid and Heart-Diseases

ArticleYear
Obeticholic acid treatment ameliorates the cardiac dysfunction in NASH mice.
    PloS one, 2022, Volume: 17, Issue:12

    Suppression of cardiac iinflammasome, which can be inhibited by Farnesoid X receptor (FXR) agonist, can ameliorate cardiac inflammation and fibrosis. Increased cardiac inflammasome decrease the abundance of regulatory T (Treg) cells and exacerbate cardiac dysfunction. Interaction between cardiomyocytes and Treg cells is involved in the development of nonalcoholic steatohepatitis (NASH)-related cardiac dysfunction.. This study evaluates whether the FXR agonist obeticholic acid (OCA) treatment improves NASH-associated cardiac dysfunction.. The in vivo and in vitro mechanisms and effects of two weeks of OCA treatment on inflammasome and Treg dysregulation-related cardiac dysfunction in NASH mice (NASH-OCA) at systemic, tissue and cellular levels were investigated.. The OCA treatment suppressed the serum and cardiac inflammasome levels, reduced the cardiac infiltrated CD3+ T cells, increased the cardiac Treg-represented anti-inflammatory cytokines (IL-10/IL-10R) and improved cardiac inflammation, fibrosis and function [decreased left ventricle (LV) mass and increased fractional shortening (FS)] in NASH-OCA mice. The percentages of OCA-decreased cardiac fibrosis and OCA-increased FS were positively correlated with the percentage of OCA-increased levels of cardiac FXR and IL-10/IL-10R. In the Treg cells from NASH-OCA mice spleen, in comparison with the Treg cells of the NASH group, higher intracellular FXR but lower inflammasome levels, and more proliferative/active and less apoptotic cells were observed. Incubation of H9c2 cardiomyoblasts with Treg-NASHcm [supernatant of Treg from NASH mice as condition medium (cm)], increased inflammasome levels, decreased the proliferative/active cells, suppressed the intracellular FXR, and downregulated differentiation/contraction marker. The Treg-NASHcm-induced hypocontractility of H9c2 can be attenuated by co-incubation with OCA, and the OCA-related effects were abolished by siIL-10R pretreatment.. Chronic FXR activation with OCA is a potential strategy for activating IL-10/IL-10R signalling, reversing cardiac regulatory T cell dysfunction, and improving inflammasome-mediated NASH-related cardiac dysfunction.

    Topics: Animals; Chenodeoxycholic Acid; Fibrosis; Heart Diseases; Interleukin-10; Mice; Non-alcoholic Fatty Liver Disease; Receptors, Cytoplasmic and Nuclear

2022